scholarly journals Three-dimensional simulation of flows in practical water-pump intakes

2006 ◽  
Vol 8 (2) ◽  
pp. 111-124 ◽  
Author(s):  
Songheng Li ◽  
Jose Matos Silva ◽  
Yong Lai ◽  
Larry J. Weber ◽  
V. C. Patel

The potential to use a three-dimensional (3D) computational fluid dynamics (CFD) model to produce the complexity of the flows in water-pump intakes and the prospects to use it as an effective assistant in the design or fixing of the related problems are reported. A scaled model of a real water-pump intake with flow conditions corresponding to the prototype was selected and studied. The Reynolds number of the model flow is 120 000, based on the diameter and bulk velocity in the pump column. The 3D CFD model solves the Reynolds averaged Navier–Stokes (RANS) equations with the k–ɛ turbulence model with wall function. A multi-block structured mesh was used. Numerical simulations are processed to reveal the important flow features in the entire flow field, compare the streamwise velocity distribution in the approaching channel, at and above the pump throat, as well as the swirl of flow at the pump throat. Numerical results provide insights into the complexity of flow around and inside the pump column under different incoming flows. This study makes significant strides from a simple intake to a real one and shows good prospects of further use of this 3D model to simulate flows in practical water-pump intakes.

1999 ◽  
Vol 121 (1) ◽  
pp. 50-56 ◽  
Author(s):  
I. Sezai ◽  
A. A. Mohamad

The flow and heat transfer characteristics of impinging laminar jets issuing from rectangular slots of different aspect ratios have been investigated numerically through the solution of three-dimensional Navier-Stokes and energy equations in steady state. The three-dimensional simulation reveals the existence of pronounced streamwise velocity off-center peaks near the impingement plate. Furthermore, the effect of these off-center velocity peaks on the Nusselt number distribution is also investigated. Interesting three-dimensional flow structures are detected which cannot be predicted by two-dimensional simulations.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


Author(s):  
Qingguang Chen ◽  
Zhong Xu ◽  
Yulin Wu ◽  
Yongjian Zhang

Flow characteristics of turbulent impinging jets issuing, respectively, from a rectangular and a square nozzles have been investigated numerically through the solution of three-dimensional Navier-Strokes equations in steady state. Two geometries with two nozzle-to-plate spacings of four and eight times of hydraulic diameters of the jet pipes, and two Reynolds numbers of 20000 and 30000 have been considered with fully developed inlet boundary conditions. An RNG based k–ε turbulence model and a deferred correction QUICK scheme in conjunction with the wall function method have been applied to the prediction of the flow fields within semi-confined spaces. A common feature revealed by the computational results is the presence of a toroidal recirculation zone around the jet. An adverse pressure gradient is found at the impingement surface downstream the stagnation point. Boundary layer separation will occur if the gradient is strong enough, and the separation manifests itself as a secondary recirculation zone at the surface. In addition, three-dimensional simulations reveal the existence of two and four pronounced streamwise velocity off-center peaks at the cross-planes near to the impingement plate, respectively, in the rectangular and square impinging jet flows. These peaks are found forming at the horizontal planes where the wall jets start forming accompanied by two or four pairs of counter-rotating vortex rings. It is believed that the formation of the off-center velocity peaks is due to the vorticity diffusion along the wall jet as the jet impinges on the target plate.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 94 ◽  
Author(s):  
Cornel Marius Murea

A monolithic semi-implicit method is presented for three-dimensional simulation of fluid–structure interaction problems. The updated Lagrangian framework is used for the structure modeled by linear elasticity equation and, for the fluid governed by the Navier–Stokes equations, we employ the Arbitrary Lagrangian Eulerian method. We use a global mesh for the fluid–structure domain where the fluid–structure interface is an interior boundary. The continuity of velocity at the interface is automatically satisfied by using globally continuous finite element for the velocity in the fluid–structure mesh. The method is fast because we solve only a linear system at each time step. Three-dimensional numerical tests are presented.


Author(s):  
Xue Guan Song ◽  
Lei Cui ◽  
Young Chul Park

We describe the dynamic analysis of a spring-loaded pressure safety valve (PSV) using a moving mesh technique and transient analysis in computational fluid dynamics (CFD). Multiple domains containing pure structural meshes are generated to ensure that the correlative mesh could change properly without negative volumes. With a geometrically accurate CFD model including the PSV and vessel rather than only the PSV, the entire process from valve opening to valve re-closure is presented. A detailed picture of the compressible fluid flowing through the PSV is obtained, including flow features in the very small seat region. In addition, the forces on the disc and its motion are monitored. Results from the model were very useful in investigating the dynamic and fluid characteristics of the PSV. Our practical CFD model has the potential to reduce the costs and risks associated with the development of new pressure safety valve designs. Future work will focus on improving the spring stiffness and seat region to eliminate or reduce vibration during the re-closure process.


Author(s):  
Qiuhao Hu ◽  
Ye Li ◽  
Fangyi Wei

Wells turbine is a kind of self-rectified air turbines used in an oscillatory water column (OWC) device for wave energy conversion. In this study, a steady three-dimensional simulation of a fan-shaped Wells turbine is performed on Star CCM+ commercial software by solving the Reynolds-averaged Navier-Stokes (RANS) equations. The turbulence effects are taken into account by using the Spalart-Allmaras turbulence model. Good agreement between the numerical results and the experimental results within the operation region (5< α <11 degrees) is observed. The geometry of the turbine rotor has a significant effect on the performance of energy conversion. Inspired by the aerodynamics of low Reynolds flyer, the normal fan-shaped Wells turbine is optimized by a bio-mimetic method in which the profile of a hawk moth wing of Manduca Sexta is applied on the blades. The modified turbine has a lower torque and pressure drop coefficient with higher efficiency. The maximum efficiency for the modified turbine is 0.61, compared to 0.48 for the normal fan-shaped one. By analysis of the detailed flow-field, it has also been found that only the middle parts of the blade can effectively generate the momentum. In order to acquire a higher efficiency, further optimization is carried out by refining some blade parts in the tip and the hub which cannot effectively produce power.


2020 ◽  
Vol 48 (4) ◽  
pp. 770-778
Author(s):  
Goran Ocokoljić ◽  
Boško Rašuo ◽  
Dijana Damljanović ◽  
Saša Živković

The flow field phenomena that occur as a result of thrust vector control (TVC) system activity on a missile with lateral jets are very complex and influence all other components of the missile. Influence is more significant when TVC is generating commands, when jets are asymmetrically directed. The main goal of these study was to determine the influence of of the hot rocket motor's combustion products on the basis of the CFD model proven with the cold-jet simulation. Based on obtained experimental aerodynamic coefficients for the cold-jet simulation the preliminary aerodynamic CFD model was designed. Three-dimensional Reynolds averaged Navier-Stokes numerical aerodynamic and hot-jet simulations were carried out to predict the aerodynamic loads of the missile based on the finite volume method. The study resulted in the definition of a methodology for the investigation of the jet reaction effects in a wind tunnel. A method for determining of the TVC system interference on the aerodynamic characteristics, as a basic prerequisite for structural, stability and performance analysis, was proposed. Mutual verification and validation process was carried out through experiment and proper application of the commercial CFD software code for calculation aerodynamic effects of the hot gases lateral jets on the performance of a guided missile. Experimental and computational results of the pitching moment coefficients are presented and agreed well with.


Author(s):  
Athul Sasikumar ◽  
Arun Kamath ◽  
Onno Musch ◽  
Hans Bihs ◽  
Øivind A. Arntsen

Harbors are important infrastructures for an offshore production chain. These harbors are protected from the actions of sea by breakwaters to ensure safe loading, unloading of vessels and also to protect the infrastructure. In current literature, research regarding the design of these structures is majorly based on physical model tests. In this study a new tool, a three-dimensional (3D) numerical model is introduced. The open-source computational fluid dynamics (CFD) model REEF3D is used to study the design of berm breakwaters. The model uses the Volume-averaged Reynolds-averaged Navier-Stokes (VRANS) equations to solve the porous flows. At first, the VRANS approach in REEF3D is validated for flow through porous media. A dam break case is simulated and comparisons are made for the free surface both inside and outside the porous medium. The numerical model REEF3D is applied to show how to extend the database obtained with purely numerical results, simulating different structural alternatives for the berm in a berm breakwater. Different simulations are conducted with varying berm geometry. The influence of the berm geometry on the pore pressure and velocities are studied. The resulting optimal berm geometry is compared to the geometry according to empirical formulations.


Author(s):  
Mehran Masoumifar ◽  
Suyash Verma ◽  
Arman Hemmati

Abstract This study evaluates how Reynolds-Averaged-Navier-Stokes (RANS) models perform in simulating the characteristics of mean three-dimensional perturbed flows in pipes with targeted wall-shapes. Capturing such flow features using turbulence models is still challenging at high Reynolds numbers. The principal objective of this investigation is to evaluate which of the well-established RANS models can best predict the flow response and recovery characteristics in perturbed pipes at moderate and high Reynolds numbers (10000-158000). First, the flow profiles at various axial locations are compared between simulations and experiments. This is followed by assessing the well-known mean pipeflow scaling relations. The good agreement between our computationally predicted data using Standard k-epsilon model and those of experiments indicated that this model can accurately capture the pipeflow characteristics in response to introduced perturbation with smooth sinusoidal axial variations.


Author(s):  
J. F. Gülich

Three-dimensional Navier—Stokes calculations are expected to be increasingly applied in the future for performance improvement of rotodynamic pumps. Frequently such an optimization process involves a preliminary design—based on one-dimensional methods and empirical data—which is subsequently optimized by computational fluid dynamics (CFD). Employing an empirical database is not only necessary in order to provide a good starting point for the CFD analysis but also to ensure that the design has a good chance of fulfilling part load requirements, since recirculating flows at the impeller inlet and outlet are not easily handled by CFD programs. CFD calculations provide the specific work input to the fluid and information on losses and reveal the complex three-dimensional flow patterns. The designer is faced with the task of interpreting such data and drawing conclusions for the optimization of the impeller. It is the purpose of the present contribution to analyse and describe the impact of various geometric parameters and flow features on the velocity distribution in the impeller and their influence on performance and part load characteristics. Criteria are also provided to select the parameters for the preliminary design. Hydraulic impeller losses calculated by CFD programs may often be misleading if the non-uniformity of the flow distribution at the impeller outlet is ignored. Procedures to quantify such mixing losses in the diffuser or volute downstream of the impeller are discussed.


Sign in / Sign up

Export Citation Format

Share Document