scholarly journals Analysis of the impact of intermittent distribution by modelling the network-filling process

2010 ◽  
Vol 13 (3) ◽  
pp. 358-373 ◽  
Author(s):  
M. De Marchis ◽  
C. M. Fontanazza ◽  
G. Freni ◽  
G. La Loggia ◽  
E. Napoli ◽  
...  

In many countries, users acquire private tanks to reduce their vulnerability to water scarcity. In such conditions, water managers often apply intermittent distribution in order to reduce the water volumes supplied to the users. This practice modifies the hydraulic behaviour of the network and determines competition among users that need to collect enough water resource for their uses. Intermittent distribution is thus responsible for the inequality that can occur among users: those located in advantaged positions of the network are able to obtain water resources soon after the service period begins, while others have to wait much longer, after the network is full. This paper analyses the inequalities that take part when intermittent distribution is applied in water scarcity scenarios. Considering the complexity of the process, the analysis was performed by means of an unsteady numerical model. The model was applied to a real case study which provided interesting insights into the network filling process, helping to highlight the advantaged and disadvantaged areas of the network in different water scarcity scenarios.

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 125 ◽  
Author(s):  
Heju Huai ◽  
Xin Chen ◽  
Jing Huang ◽  
Fu Chen

In recent decades, China’s crop production experienced a spatial shift, and this shift may significantly influence the national water resources due to the geographical mismatch between water resources and cropland. By applying the widely applied AquaCrop model, this study quantified the impact of grain crop (rice and maize) expansion in northeastern China on the country’s water resources. We found that the production of rice and maize increased by 60% and 43%, respectively, in the northeast, whereas the water scarcity-footprint (WSF) increased by 200% and 125%. Using sensitivity analysis, we found that the increase in the WSF was mainly caused by the increase in regional water scarcity, as reflected by a water scarcity index, and by the increase in production. To alleviate regional water scarcity, crop expansion into regions that experience high water stress should be constrained. A detailed reassessment of this situation is urgently needed.


2021 ◽  
pp. 096466392110316
Author(s):  
Chloé Nicolas-Artero

This article shows how geo-legal devices created to deal with environmental crisis situations make access to drinking water precarious and contribute to the overexploitation and contamination of water resources. It relies on qualitative methods (interviews, observations, archive work) to identify and analyse two geo-legal devices applied in the case study of the Elqui Valley in Chile. The first device, generated by the Declaration of Water Scarcity, allows private sanitation companies to concentrate water rights and extend their supply network, thus producing an overexploitation of water resources. In the context of mining pollution, the second device is structured around the implementation of the Rural Drinking Water Programme and the distribution of water by tankers, which has made access to drinking water more precarious for the population and does nothing to prevent pollution.


2018 ◽  
Vol 10 (10) ◽  
pp. 3556 ◽  
Author(s):  
Gang Liu ◽  
Lu Shi ◽  
Kevin Li

This paper develops a lexicographic optimization model to allocate agricultural and non-agricultural water footprints by using the land area as the influencing factor. An index known as the water-footprint-land density (WFLD) index is then put forward to assess the impact and equity of the resulting allocation scheme. Subsequently, the proposed model is applied to a case study allocating water resources for the 11 provinces and municipalities in the Yangtze River Economic Belt (YREB). The objective is to achieve equitable spatial allocation of water resources from a water footprint perspective. Based on the statistical data in 2013, this approach starts with a proper accounting for water footprints in the 11 YREB provinces. We then determined an optimal allocation of water footprints by using the proposed lexicographic optimization approach from a land area angle. Lastly, we analyzed how different types of land uses contribute to allocation equity and we discuss policy changes to implement the optimal allocation schemes in the YREB. Analytical results show that: (1) the optimized agricultural and non-agricultural water footprints decrease from the current levels for each province across the YREB, but this decrease shows a heterogeneous pattern; (2) the WFLD of 11 YREB provinces all decline after optimization with the largest decline in Shanghai and the smallest decline in Sichuan; and (3) the impact of agricultural land on the allocation of agricultural water footprints is mainly reflected in the land use structure of three land types including arable land, forest land, and grassland. The different land use structures in the upstream, midstream, and downstream regions lead to the spatial heterogeneity of the optimized agricultural water footprints in the three YREB segments; (4) In addition to the non-agricultural land area, different regional industrial structures are the main reason for the spatial heterogeneity of the optimized non-agricultural water footprints. Our water-footprint-based optimal water resources allocation scheme helps alleviate the water resources shortage pressure and achieve coordinated and balanced development in the YREB.


2009 ◽  
Vol 70 (4) ◽  
pp. 363-371
Author(s):  
Andrzej Boczoń ◽  
Michał Wróbel ◽  
Valentyn Syniaiev

Wpływ stawów bobrowych na zasoby wodne zlewni na przykładzie badań w Nadleśnictwie Browsk


Author(s):  
V Shinju ◽  
Aswathi Prasad

The natural resources are repository for the survival of all of us, so they must be used efficiently to meet the present needs while conserving them for future generations. An action to develop capacities from global to household levels for their sustainable management and regulation is required henceforth. Of these natural resources, water resources are most precious. If there is no water; there would be no life on earth. Since ‘water is the elixir of life’, water resource management has been considered as one of the most relevant areas of intervention. Understanding the gender dimensions of water resource management is a starting point for reversing the degradation of water resources. Women play an important role here since they have to access the water resources for almost all the activities on a daily basis. As the women are the strong social agents, effective and improved water preservation techniques could be achieved through their empowerment that may eventually lead to the well-being of the households in particular and of the community in general. Therefore, the major research question posed in this study is to analyze the role of women in the preservation and management of water, an inevitable, precious but diminishing natural resource. The study also intends to describe the relationship between the three ‘W's-Women, Water & Well-being. Both qualitative and quantitative approaches are essential here as it is a contingent issue in the present scenario. Psychological dimensions were also explored since the issue is affecting the routine life of the community. The case study of women belonging to the Kuttadampadam region was done to explain the role of women in preserving water resources in the areas affecting severe water scarcity.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6268
Author(s):  
Aditya Dinesh Gupta ◽  
Prerna Pandey ◽  
Andrés Feijóo ◽  
Zaher Mundher Yaseen ◽  
Neeraj Dhanraj Bokde

According to the United Nation’s World Water Development Report, by 2050 more than 50% of the world’s population will be under high water scarcity. To avoid water stress, water resources are needed to be managed more securely. Smart water technology (SWT) has evolved for proper management and saving of water resources. Smart water system (SWS) uses sensor, information, and communication technology (ICT) to provide real-time monitoring of data such as pressure, water ow, water quality, moisture, etc. with the capability to detect any abnormalities such as non-revenue water (NRW) losses, water contamination in the water distribution system (WDS). It makes water and energy utilization more efficient in the water treatment plant and agriculture. In addition, the standardization of data format i.e., use of Water Mark UP language 2.0 has made data exchange easier for between different water authorities. This review research exhibits the current state-of-the-art of the on-going SWT along with present challenges and future scope on the mentioned technologies. A conclusion is drawn that smart technologies can lead to better water resource management, which can lead to the reduction of water scarcity worldwide. High implementation cost may act as a barrier to the implementation of SWT in developing countries, whereas data security and its reliability along with system ability to give accurate results are some of the key challenges in its field implementation.


2020 ◽  
Vol 12 (17) ◽  
pp. 6944
Author(s):  
Yiru Guo ◽  
Yan Hu ◽  
Ke Shi ◽  
Yuriy Bilan

With progress in China’s industrialization and urbanization, the contradiction of social and economic development with water resource supply–demand and water environmental pollution becomes increasingly prominent. To cope with the dual constraints of resource shortage and environmental regulations, the concept of water resource green efficiency that considers economic, environmental, and ecological factors is highly involved to promote sustainable economic development. The theoretical and practice circle devote to scientific green efficiency assessment of water resources and effective recognition of relevant influencing factors. However, to an extent they neglect social benefits brought by sustainable development and possible influences of industrial restructuring on green efficiency. They also lack concern on green efficiency of water resources in inland arid areas. To offset the disadvantages of existing studies, the philosophy of sustainable development was integrated into the input–output assessment system of green efficiency of water resources, and an assessment model was constructed using the SBM–Tobit (slack-based measure and Tobit) method. Moreover, a case study based on Henan Province, China was carried out. The green efficiencies of water resources in 18 cities of Henan Province during 2011–2018 were calculated. The operation mechanism of relevant influencing factors was discussed, and the methods to improve green efficiency of water resources were determined. Results reveal that the sustainable green efficiency of water resources in Henan Province increased in fluctuation during 2011–2018. The mean green efficiency increased from 0.425 in 2011 to 0.498 in 2018. At present, green efficiency of water resources in Henan Province remains at a low level, with a mean of 0.504. Reducing water consumption intensity and increasing investment to water environmental pollution technologies can promote green efficiency of water resources significantly. Conclusions provide a new method for scientific measurement and green efficiency assessment of water resources in inland arid areas.


2013 ◽  
Vol 295-298 ◽  
pp. 964-969 ◽  
Author(s):  
Su Ling Liu ◽  
Yu Xin Wang ◽  
Xiao Hui Mao

The water footprint and consumption pattern is an effective tool for quantitifying the volume of water resources consumption in certain region [ ].Shunyi’s water footprint in the period 2006-2010 is calculated in this article from the view of virtual water. The general water footprint in Shunyi District at the year 2010 reached 790 million m3 and water footprint per capita was 536.48 cubic meters. Shunyi 's water resource quantity per capita was 501.27 m3 in the same year and the Water Scarcity Index was 1.98. The result of calculation shows that the water resource volume of exploitation in Shunyi District of Beijing has been beyond the water resources carrying capacity.


2014 ◽  
Vol 4 (3) ◽  
pp. 137-153 ◽  
Author(s):  
Wenyi Wang ◽  
Weihua Zeng ◽  
Bo Yao ◽  
Jing Wei

Due to the fast growth of the economy and population, the water scarcity issue has aroused widespread critical concern. In fact, reasonable structure, adaptive patterns and effective regulation of the economy, society and water resources can bring a harmonious future. Therefore, the study of how to balance economic social growth and water resources is of great importance. A model of the water resource, society and economy system of the Tongzhou district was designed by Stella. The model established here attempts to analyze future trends in social-economic development and the impact of the economic and population growth on water use in the Tongzhou district under three scenarios. The results reveal that the water shortage is very serious. If the current trends persist, the existing water supply will not be able to meet the water demand in the future. Tongzhou district's water shortage will be 162.50 million m3 in 2020 under the business-as-usual scenario. Therefore, it is necessary to develop unconventional water sources and improve the water-saving capacity of production and life to alleviate the water tensions. This research offers insight into larger questions regarding economic growth and water resource management in general.


2022 ◽  
Vol 82 ◽  
Author(s):  
C. Yerli ◽  
U. Sahin

Abstract Today, most of the world’s population faces water scarcity, while global warming, urbanization, industrialization and population increases continue to increase the severity of the pressure on water resources. Management of water resources plays a key role in the sustainability of agricultural production. The water footprint (WF) is different in comparison to other water statistics because it takes direct and indirect water consumption into account, and helps in the management of water resources. Within this context, the WF of Van province, which is Turkey’s most easterly located arid region, was calculated from 2004 to 2019. The study area covers lake Van, which is Turkey's largest lake, and the Van basin with an area of 23.334 km2 and a population of 1.136.757 (2019). In the calculations, crop (WFcrop), livestock (WFlivestock), and domestic and industrial water footprints (WFdomestic+industrial) were evaluated separately, and blue and green water footprints (WFblue and WFgreen) were analyzed in detail. According to the results, the average WF of Van province was found to be 8.73 billion m3 year-1. Throughout the province, 87.6% of the WF is composed of WFcrop, 4.9% is WFlivestock and 7.5% is WFdomestic+industrial. Of the WFcrop, 62.5% depends on WFblue, i.e., freshwater. Most of the WFlivestock consisted of dairy cattle (49%) and sheep (38%). The average WFdomestic+industrial for 2004 to 2019 was 0.64 billion m3 year-1. The average per capita water footprint of Van province was found to be 889.9 m3 year-1 capita-1. In addition, the province is classified as severe water scarcity (257%). This study is one of the first province-based calculations of WF in Turkey and is the first study to bring a different aspect to published literature by including residual soil moisture from the winter months. As a result of this study, the WFblue of the WFcrop is above the worldwide average and should be reduced by changing the crop pattern or synchronizing the planting and harvest dates of the crops to a period that benefits from precipitation. In addition, this study is expected to contribute to new studies for calculating the provincial scale WF and will have positive effects on agricultural planning, water allocation and the sustainability of water resources.


Sign in / Sign up

Export Citation Format

Share Document