scholarly journals Runoff prediction in ungauged catchments in Norway: comparison of regionalization approaches

2017 ◽  
Vol 49 (2) ◽  
pp. 487-505 ◽  
Author(s):  
Xue Yang ◽  
Jan Magnusson ◽  
Jonathan Rizzi ◽  
Chong-Yu Xu

Abstract Runoff prediction in ungauged catchments has been a challenging topic over recent decades. Much research have been conducted including the intensive studies of the PUB (Prediction in Ungauged Basins) Decade of the International Association for Hydrological Science. Great progress has been made in the field of regionalization study of hydrological models; however, there is no clear conclusion yet about the applicability of various methods in different regions and for different models. This study made a comprehensive assessment of the strengths and limitations of existing regionalization methods in predicting ungauged stream flows in the high latitudes, large climate and geographically diverse, seasonally snow-covered mountainous catchments of Norway. The regionalization methods were evaluated using the water balance model – WASMOD (Water And Snow balance MODeling system) on 118 independent catchments in Norway, and the results show that: (1) distance-based similarity approaches (spatial proximity, physical similarity) performed better than regression-based approaches; (2) one of the combination approaches (combining spatial proximity and physical similarity methods) could slightly improve the simulation; and (3) classifying the catchments into homogeneous groups did not improve the simulations in ungauged catchments in our study region. This study contributes to the theoretical understanding and development of regionalization methods.

Author(s):  
Q. Li ◽  
Z. Li ◽  
L. Chen ◽  
C. Yao

Abstract. This study aims to identify both hydrologically and physically similar catchments which would be the best donors for runoff prediction in ungauged catchments. For this study, eight gauged catchments located in the semi-humid and semi-arid regions of Northern China were used. Hydrological similarity was defined based on the transferability of coaxial correlation diagrams. The physical similarity among catchments was determined by a weighted Euclidean distance based on 19 catchment descriptors including catchment topography, land cover, and soil type. The overlap between hydrologically similar catchments and physically similar catchments was then analysed to identify the best donors. The results suggest that six catchments were hydrologically similar, of which four catchments were both hydrologically and physically similar. It is argued that once a reliable coaxial correlation diagram has been established, the coaxial correlation diagram can be transferred from one catchment to another for runoff prediction, provided that these catchments are physical similar.


2013 ◽  
Vol 46 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Sokchhay Heng ◽  
Tadashi Suetsugi

The main objective of this research is to regionalize the sediment rating curve (SRC) for subsequent sediment yield prediction in ungauged catchments (UCs) in the Lower Mekong Basin. Firstly, a power function-based SRC was fitted for 17 catchments located in different parts of the basin. According to physical characteristics of the fitted SRCs, the sediment amount observed at the catchment outlets is mainly transported by several events. This also indicates that clockwise hysteretic phenomenon of sediment transport is rather important in this basin. Secondly, after discarding two outlier catchments due to data uncertainty, the remaining 15 catchments were accounted for the assessment of model performance in UCs by means of jack-knife procedure. The model regionalization was conducted using spatial proximity approach. As a result of comparative study, the spatial proximity approach based on single donor catchment provides a better regionalization solution than the one based on multiple donor catchments. By considering the ideal alternative, a satisfactory result was obtained in almost all the modeled catchments. Finally, a regional model which is a combination of the 15 locally fitted SRCs was established for use in the basin. The model users can check the probability that the prediction results are satisfactory using the designed probability curve.


2021 ◽  
Vol 25 (11) ◽  
pp. 5805-5837
Author(s):  
Oscar M. Baez-Villanueva ◽  
Mauricio Zambrano-Bigiarini ◽  
Pablo A. Mendoza ◽  
Ian McNamara ◽  
Hylke E. Beck ◽  
...  

Abstract. Over the past decades, novel parameter regionalisation techniques have been developed to predict streamflow in data-scarce regions. In this paper, we examined how the choice of gridded daily precipitation (P) products affects the relative performance of three well-known parameter regionalisation techniques (spatial proximity, feature similarity, and parameter regression) over 100 near-natural catchments with diverse hydrological regimes across Chile. We set up and calibrated a conceptual semi-distributed HBV-like hydrological model (TUWmodel) for each catchment, using four P products (CR2MET, RF-MEP, ERA5, and MSWEPv2.8). We assessed the ability of these regionalisation techniques to transfer the parameters of a rainfall-runoff model, implementing a leave-one-out cross-validation procedure for each P product. Despite differences in the spatio-temporal distribution of P, all products provided good performance during calibration (median Kling–Gupta efficiencies (KGE′s) > 0.77), two independent verification periods (median KGE′s >0.70 and 0.61, for near-normal and dry conditions, respectively), and regionalisation (median KGE′s for the best method ranging from 0.56 to 0.63). We show how model calibration is able to compensate, to some extent, differences between P forcings by adjusting model parameters and thus the water balance components. Overall, feature similarity provided the best results, followed by spatial proximity, while parameter regression resulted in the worst performance, reinforcing the importance of transferring complete model parameter sets to ungauged catchments. Our results suggest that (i) merging P products and ground-based measurements does not necessarily translate into an improved hydrologic model performance; (ii) the spatial resolution of P products does not substantially affect the regionalisation performance; (iii) a P product that provides the best individual model performance during calibration and verification does not necessarily yield the best performance in terms of parameter regionalisation; and (iv) the model parameters and the performance of regionalisation methods are affected by the hydrological regime, with the best results for spatial proximity and feature similarity obtained for rain-dominated catchments with a minor snowmelt component.


2013 ◽  
Vol 12 ◽  
pp. 52-58 ◽  
Author(s):  
Bijaya Tamrakar ◽  
Knut Alfredsen

Runoff is one of the major factors that govern the capacity of a hydropower project. Precipitation data are needed for estimation of runoff through runoff simulation using a hydrological model. Dense setup of rain gauge network in a mountainous topography is difficult and expensive. An alternative for this problem is the use of Satellite precipitation data with high spatial and temporal resolution. They have an additional advantage that they represent areal precipitation. But, these data should be duly evaluated before using them. In this study, Tropical Rainfall Measuring Mission (TRMM 3B42) precipitation data are evaluated using ground based precipitation stations over Nepal and fed in a rainfall-runoff model to estimate monthly discharge through four of the major basins of Nepal. A simple water balance model has been used, initially developed by Thornthwaite. Statistical parameters showed significant under-estimation of precipitation over major areas of Nepal. The results from the water balance model presented quiet a good estimation of discharge through basins with an average Nash Sutcliffe Efficiency (R²) value of 0.8. This implies that TRMM data can be used for runoff simulations over Nepal. The TRMM satellite data can be used during the planning stage of hydropower projects as well as on ungauged catchments. Hydro Nepal: Journal of Water, Energy and Environment Vol. 12, 2013, January Page: 52-58DOI: http://dx.doi.org/10.3126/hn.v12i0.9033 Uploaded Date : 10/29/2013


2012 ◽  
Vol 16 (2) ◽  
pp. 551-562 ◽  
Author(s):  
S. Patil ◽  
M. Stieglitz

Abstract. Prediction of streamflow at ungauged catchments requires transfer of hydrologic information (e.g., model parameters, hydrologic indices, streamflow values) from gauged (donor) to ungauged (receiver) catchments. A common metric used for the selection of ideal donor catchments is the spatial proximity between donor and receiver catchments. However, it is not clear whether information transfer among nearby catchments is suitable across a wide range of climatic and geographic regions. We examine this issue using the data from 756 catchments within the continental United States. Each catchment is considered ungauged in turn and daily streamflow is simulated through distance-based interpolation of streamflows from neighboring catchments. Results show that distinct geographic regions exist in US where transfer of streamflow values from nearby catchments is useful for retrospective prediction of daily streamflow at ungauged catchments. Specifically, the high predictability catchments (Nash-Sutcliffe efficiency NS > 0.7) are confined to the Appalachian Mountains in eastern US, the Rocky Mountains, and the Cascade Mountains in the Pacific Northwest. Low predictability catchments (NS < 0.3) are located mostly in the drier regions west of Mississippi river, which demonstrates the limited utility of gauged catchments in those regions for predicting at ungauged basins. The results suggest that high streamflow similarity among nearby catchments (and therefore, good predictability at ungauged catchments) is more likely in humid runoff-dominated regions than in dry evapotranspiration-dominated regions. We further find that higher density and/or closer distance of gauged catchments near an ungauged catchment does not necessarily guarantee good predictability at an ungauged catchment.


2011 ◽  
Vol 8 (5) ◽  
pp. 9323-9355 ◽  
Author(s):  
S. Patil ◽  
M. Stieglitz

Abstract. Prediction of streamflows at ungauged catchments requires transfer of hydrologic information (e.g., model parameters, hydrologic indices, streamflow values) from gauged (donor) to ungauged (receiver) catchments. One of the most reliable metrics for selection of ideal donor catchments is the spatial proximity between donor and receiver catchments. However, it is not clear whether information transfer among nearby catchments is suitable across a wide range of climatic and geographic regions. We examine this issue using the data from 756 catchments within the continental United States. Each catchment is considered ungauged in turn and daily streamflow is simulated through distance-based interpolation of streamflows from neighboring catchments. Results show that distinct geographic regions exist in US where transfer of streamflow values from nearby catchments is useful for retrospective prediction of daily streamflow at ungauged catchments. Specifically, the high predictability catchments (Nash-Sutcliffe efficiency NS > 0.7) are confined to the Appalachian Mountains in eastern US, the Rocky Mountains, and the Cascade Mountains in the Pacific Northwest. Low predictability catchments (NS < 0.3) are located mostly in the drier regions west of Mississippi river, which demonstrates the limited utility of gauged catchments in those regions for predicting at ungauged basins. The results suggest that high streamflow similarity among nearby catchments (and therefore, good predictability at ungauged catchments) is more likely in humid runoff-dominated regions than in dry evapotranspiration-dominated regions. We further find that higher density and/or closer distance of gauged catchments near an ungauged catchment does not necessarily guarantee good predictability at an ungauged catchment.


2020 ◽  
Author(s):  
Wenyan Qi ◽  
Jie Chen ◽  
Lu Li ◽  
Chong-yu Xu ◽  
Jingjing Li ◽  
...  

Abstract. To provide an accurate estimate of global water resources and help to formulate water allocation policies, global hydrological models (GHMs) have been developed. However, it is difficult to obtain parameter values for GHMs, which results in large uncertainty in estimation of the global water balance components. In this study, a framework is developed for building GHMs based on parameter regionalization of catchment scale conceptual hydrological models. That is, using appropriate global scale regionalization scheme (GSRS) and conceptual hydrological models to simulate runoff at the grid scale globally and the Network Response Routing (NRF) method to converge the grid runoff to catchment streamflow. To achieve this, five regionalization methods (i.e. the global mean method, the spatial proximity method, the physical similarity method, the physical similarity method considering distance, and the regression method) are first tested for four conceptual hydrological models over thousands medium-sized catchments (2500–50000 km2) around the world to find the appropriate global scale regionalization scheme. The selected GSRS is then used to regionalize conceptual model parameters for global land grids with 0.5°×0.5° resolution on latitude and longitude. The results show that: (1) Spatial proximity method with the Inverse Distance Weighting (IDW) method and the output average option (SPI-OUT) offers the best regionalization solution, and the greatest gains of the SPI-OUT method were achieved with mean distance between the donor catchments and the target catchment is no more than 1500 km. (2) It was found the Kling-Gupta efficiency (KGE) value of 0.5 is a good threshold value to select donor catchments. And (3) Four different GHMs established based on framework were able to produce reliable streamflow simulations. Overall, the proposal framework can be used with any conceptual hydrological model for estimating global water resources, even though uncertainty exists in terms of using difference conceptual models.


2019 ◽  
Vol 7 (2) ◽  
pp. 1-5
Author(s):  
Елена Андреева ◽  
Elena Andreeva ◽  
Александр Суглобов ◽  
Aleksandr Suglobov

The article is devoted to the theoretical understanding of the qualitatively new trends in the development of customs technologies related to digitalization. We are talking about the prospects of creating artificial intelligence designed to identify homogeneous groups of goods during customs control. A critical assessment of existing software products used to identify goods for customs purposes is given, a number of shortcomings are noted that do not allow for full identification with the particularities of building a single Commodity Nomenclature for Foreign Economic Activities of the Eurasian Economic Union (CN for FEA of EEU). A model for the formation of databases of identification characteristics of homogeneous groups of goods and the principle of developing scenarios for expert systems for the identification of products based on artificial intelligence are proposed.


2005 ◽  
Vol 51 (3-4) ◽  
pp. 319-327 ◽  
Author(s):  
S.M. Dunn ◽  
A.J.A. Vinten ◽  
A. Lilly ◽  
J. DeGroote ◽  
M. McGechan

The Nitrogen Risk Assessment Model for Scotland (NIRAMS) has been developed as a screening tool for prediction of streamwater N concentrations draining from agricultural land in Scotland. The objective of the model is to be able to predict N concentrations for ungauged catchments, to fill gaps in monitoring data and provide guidance in relation to policy development. The model uses national land use, soils and meteorology data sets and has been developed within an ArcView GIS user interface. The model includes modules to calculate N inputs to the land, residual N remaining at the end of the growing season, weekly time-series of leached N and transport of N at the catchment scale. The N leaching and transport are controlled by hydrological modules, including a national water balance model and a catchment scale transport model. Preliminary testing of NIRAMS has been carried out on eight Scottish catchments, diverse in terms of geographic location as well as land use. The model is capable of predicting the correct mean level of stream N concentrations, as well as the basic characteristics of seasonal variation. As such the model can be of value for providing estimates of N concentrations in ungauged areas.


Sign in / Sign up

Export Citation Format

Share Document