scholarly journals A review on adsorbent parameters for removal of dye products from industrial wastewater

Author(s):  
Ali Soltani ◽  
Mehdi Faramarzi ◽  
Seyed Aboutaleb ◽  
Mousavi Parsa

Abstract Industrial effluents are usually one of the major industries polluting the environment and surface water. It is estimated that the worldwide production of dyes is about 70 tons/year. To overcome this problem, innovative processes are suggested for the treatment of industrial effluents containing dyes and heavy metals. The goal of the processes is often to reduce the toxicity of these pollutants in order to meet treatment standards. Recently, great attention has been paid to innovative processes for physical and chemical removal techniques such as adsorption on new adsorbents, biomass adsorption, membrane filtration, irradiation, and electrochemical coagulation. In this study, the application of adsorbents in the adsorption process to remove dye pollutants from industrial effluents has been studied. Factors affecting dye adsorption such as pH, temperature, initial dye concentration, and adsorbent amount are also presented. The obtained results revealed that more than 80% of the dye adsorption on the surface of adsorbents are endothermic processes and more than 95% of the processes obey the pseudo-second-order kinetic model.

2016 ◽  
Vol 75 (4) ◽  
pp. 753-764 ◽  
Author(s):  
Asma Ehsan ◽  
Haq Nawaz Bhatti ◽  
Munawar Iqbal ◽  
Saima Noreen

Environmental applications of composites have attracted the interests of researchers due to their excellent adsorption efficiency for pollutants. Native, HCl pre-treated clay and MnFe2O4/clay composite were investigated as an adsorbent for removal of methyl green from aqueous solution. The adsorption behaviors of dye onto native, HCl pre-treated and composite clays were studied as a function of contact time, adsorbent dose, pH, initial dye concentration and temperature. Maximum dye adsorption of 44 mg/g was achieved at pH of 8, contact time 40 min, adsorbent dose 0.20 g/L and initial dye concentration of 125 mg/L using clay composite. The Langmuir isotherm and pseudo-second-order kinetic model best explained the methyl green dye adsorption onto clay adsorbents. Thermodynamic parameters revealed the endothermic and spontaneous adsorption nature of dye. From results, it is concluded that clay has potential for adsorbing methyl green and can be used for the removal of dyes from industrial effluents.


2021 ◽  
Vol 11 (11) ◽  
pp. 5127
Author(s):  
Carmen Omaira Márquez ◽  
Víctor Julio García ◽  
Jefferson Raúl Guaypatin ◽  
Francisco Fernández-Martínez ◽  
Anita Cecilia Ríos

One of the main challenges for environmental sciences today is the effective treatment of dye-laden industrial effluents. This work aimed to study the potential of an untreated (natural occurring clayey composite) red clay (RC) for the adsorption of a cationic dye Basic Navy Blue 2RN (CNB) and anionic dye Drimaren Yellow CL-2R (ADY). We evaluated the effect of pH, dye concentration, and adsorbent concentration on the removal effectiveness to study the absorption process. Also, we studied the adsorption process by analyzing the feasibility of several known adsorption isotherms and kinetic models. The results show that at a pH of less than 4, the CNB and ADY removal percentages were 97% and 96%, respectively. At a pH greater than 8, the CNB and ADY removals were 75% and 25%, respectively. The CNB adsorption happened by chemisorption of a monolayer on iron-containing particles (IPs). In congtrast, the ADY adsorption occurred by monolayer physisorption on kaolinite particles (KPs) and Na, K-rich Laumontite particles (LPs). The Langmuir isotherm model fits very well with CNB experimental data. The Temkin model shows the best fit between the isotherm function and the ADY dye-adsorption data. The pseudo-second-order kinetic model fits the CNB and ADY dye-adsorption data on RC particles. The heterogeneous composition of naturally occurring clay favors different adsorption mechanisms and opens an avenue for the separation process’s engineering.


2018 ◽  
Vol 31 (1) ◽  
pp. 58
Author(s):  
Ahmed Mohammed Abbas ◽  
Suha Sahib Abd ◽  
Takialdin Abdulhadi Himdan

    Kinetic experiments were performed to induce of the green methyl dye adsorption from aqueous solution on the bauxite clay. This study includes  determination of  the adsorption capacity of  bauxite clay to methyl green dye adsorption and study the effect of some parameters  ( temperature , time ) on the kinetic of the adsorption process of the dye were studied. Quantity of dye adsorbed was increased when the temperature increases from 298 to 318K which indicates that methyl green adsorption processes are endothermic nature . In order to describe the kinetic data and the rate adsorption constants of the pseudo-first-order and  second-order kinetics were used . The kinetics data were applied well with the second-order kinetic model. From  activation energy value (Ea)   for methyl green dye are energetically favorable and the dye adsorption  includes  physical  and chemical adsorption types


2020 ◽  
Vol 81 (7) ◽  
pp. 1518-1529
Author(s):  
Huan Xi ◽  
Qingqing Li ◽  
Yan Yang ◽  
Jianfeng Zhang ◽  
Feng Guo ◽  
...  

Abstract Despite the fact of natural abundance, low cost and environmental friendliness, the far-from-sufficient adsorption capacity of natural bentonite (BT) has limited such a promising application to remove dye pollutants. In this paper, we proposed a facile modification strategy to enhance adsorption performance of bentonite utilizing synergistic acid activation and hydroxyl iron pillaring, by which the adsorbent (abbreviated as S-Fe-BT) exhibited the highest adsorption capacity (246.06 mg/g) and a high rapid adsorption rate for a typical organic dye, Rhodamine B (RhB). This could be ascribed to the increased interlayer spacing, the increased specific surface area, and the optimized OH/Fe ratio after the synthetic modification of the pristine BT. The adsorption behavior of RhB onto S-Fe-BT was well described by the pseudo-second-order kinetic model, indicating a chemical-adsorption-controlled process. Furthermore, its adsorption isotherm matched well with the Langmuir model due to a monolayer adsorption process. This paper opens a promising direction to remove the dye pollution using low cost bentonite adsorbents treated by such a convenient modification strategy.


2018 ◽  
Vol 69 (9) ◽  
pp. 2323-2330 ◽  
Author(s):  
Daniela C. Culita ◽  
Claudia Maria Simonescu ◽  
Rodica Elena Patescu ◽  
Nicolae Stanica

A series of three chitosan-based magnetic composites was prepared through a simple coprecipitation method. It was investigated the influence of mass ratio between chitosan and magnetite on the physical and chemical properties of the composites in order to establish the optimum conditions for obtaining a composite with good adsorption capacity for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions. It was found that the microspheres prepared using mass ratio chitosan / magnetite 1.25/1, having a saturation magnetization of 15 emu g--1, are the best to be used as adsorbent for the metal ions. The influence of different parameters such as initial pH values, contact time, initial concentration of metal ions, on the adsorption of Pb(II) and Cu(II) onto the chitosan-based magnetic adsorbent was investigated in details. The adsorption process fits the pseudo-second-order kinetic model in both mono and bicomponent systems, and the maximum adsorption capacities calculated on the basis of the Langmuir model were 79.4 mg g--1 for Pb(II) and 48.5 mg g--1 for Cu(II) in monocomponent systems, while in bicomponent systems were 88.3 and 49.5 mg g--1, respectively. The results revealed that the as prepared chitosan-based magnetic adsorbent can be an effective and promising adsorbent for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions.


Marine Drugs ◽  
2018 ◽  
Vol 16 (12) ◽  
pp. 476 ◽  
Author(s):  
Shuxian Tang ◽  
Ying Zhao ◽  
Haitao Wang ◽  
Yuqiao Wang ◽  
Hexiang Zhu ◽  
...  

A polyampholytic superabsorbent polymer (PASAP), sodium alginate-g-(polyacrylic acid-co-allyltrimethylammonium chloride) (SA-g-(PAA-co-PTM)), was prepared by free-radical graft copolymerization and characterized. The polymer exhibited pH-dependent swelling behaviors with extremely high swelling ratios, and was saline tolerant. The dye adsorption properties of SA-g-(PAA-co-PTM) were investigated using methylene blue (MB) as a cationic dye model. It was found that its dye adsorption capacity was significantly affected by the TM content in PASAP and pH of dye solution. The dye adsorption kinetics and isotherm obey the pseudo-second-order kinetic model and the Langmuir isotherm model, respectively, and the adsorption process is chemisorption in nature. In addition, SA-g-(PAA-co-PTM) exhibited high MB adsorption capacities in a wide pH range and reusability in at least five adsorption-desorption cycles, indicating its great application potentials as the adsorbent for dye removals from effluents.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Maryam Yazdani ◽  
Hajir Bahrami ◽  
Mokhtar Arami

Chitosan/feldspar biobased beads were synthesized, characterized, and tested for the removal of Acid Black 1 dye from aquatic phases. A four-factor central composite design (CCD) accompanied by response surface modeling (RSM) and optimization was used to optimize the dye adsorption by the adsorbent (chitosan/feldspar composite) in 31 different batch experiments. Independent variables of temperature, pH, initial dye concentration, and adsorbent dose were used to change to coded values. To anticipate the responses, a quadratic model was applied. Analysis of variance (ANOVA) tested the significance of the process factors and their interactions. The adequacy of the model was investigated by the correlation between experimental and predicted data of the adsorption and the calculation of prediction errors. The results showed that the predicted maximum adsorption amount of 21.63 mg/g under the optimum conditions (pH 3, temperature 15°C, initial dye concentration 125 mg/L, and dose 0.2 g/50 mL) was close to the experimental value of 19.85 mg/g. In addition, the results of adsorption behaviors of the dye illustrated that the adsorption process followed the Langmuir isotherm model and the pseudo-second-order kinetic model. Langmuir sorption capacity was found to be 17.86 mg/g. Besides, thermodynamic parameters were evaluated and revealed that the adsorption process was exothermic and favourable.


2015 ◽  
Vol 69 (7) ◽  
Author(s):  
Mohammad Peydayesh ◽  
Mojgan Isanejad ◽  
Toraj Mohammadi ◽  
Seyed Mohammad Reza Seyed Jafari

AbstractMethylene blue (MB) removal using eco-friendly, cost-effective, and freely available Urtica was investigated. The morphology of the adsorbent surface and the nature of the possible Urtica and MB interactions were examined using SEM analysis and the FTIR technique, respectively. Various factors affecting MB adsorption such as adsorption time, initial MB concentration, temperature, and solution pH were investigated. The adsorption process was analysed using different kinetic models and isotherms. The results showed that the MB adsorption kinetic follows a pseudo-second-order kinetic model and the isotherm data fit the Langmuir isotherm well. Thermodynamic parameters, such as ΔG°, ΔH°, and ΔS°, were also evaluated, and the results indicated that the adsorption process is endothermic and spontaneous in nature. The MB adsorption capacity of Urtica was found to be as high as 101.01 mg g


2019 ◽  
Vol 62 (3) ◽  
Author(s):  
Naereh Besharati ◽  
Nina Alizadeh ◽  
Shahab Shariati

Abstract. This study was focused on the adsorption of methylene blue (MB) as a cationic dye on magnetite nanoparticles loaded with coffee (MNLC) and magnetite nanoparticles loaded with peanut husk (MNLPH) as naturally cheap sources of adsorbent. Coffee and Peanut husk were magnetically modified by contact with water-based magnetic fluid. These new type of magnetically natural materials can be easily separated by means of magnetic separators. They were characterized with Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) instruments. Different parameters affecting MB removal efficiency such as contact time, pH of solution and amount of adsorbents were studied and optimized. Dye adsorption process was studied from both kinetic and equilibrium point. The studies of MB sorption kinetic showed rapid dynamic sorption with second-order kinetic model, suggesting chemisorption mechanism with R2 = 0.9988, qeq=10.28 mg g-1 and R2=0.9967, qeq=128.20 mg g-1, respectively. Equilibrium data were fitted well to the Langmuir isotherm more than Freundlich and Temkin isotherm. The modified adsorbents showed MB removal with 88.49 and 74.62 mg g-1 sorption capacity for MNLC and MNLPH, respectively. This study showed a simple, efficient and reliable method for removal of MB from aqueous solutions with MNLC and MNLPH as efficient adsorbents. Resumen. Este estudio se centró en la adsorción de azul de metileno (MB) como un colorante catiónico en nanopartículas de magnetita cargadas con café (MNLC) y nanopartículas de magnetita cargadas con cáscara de cacahuete (MNLPH) como fuentes de adsorbente naturalmente económicas. El café y la cáscara de maní se modificaron magnéticamente por contacto con un fluido magnético a base de agua. Este nuevo tipo de materiales magnéticamente naturales se puede separar fácilmente mediante separadores magnéticos. Se caracterizaron con espectroscopia infrarroja de transformada de Fourier (FT-IR), difracción de rayos X en polvo (DRX) y microscopía electrónica de barrido (SEM). Se estudiaron y optimizaron diferentes parámetros que afectan la eficiencia de eliminación de MB, como el tiempo de contacto, el pH de la solución y la cantidad de adsorbentes. Se estudió el proceso de adsorción de tinte desde el punto de equilibrio y cinético. Los estudios de cinética de absorción de MB mostraron una absorción dinámica rápida con un modelo cinético de segundo orden, lo que sugiere un mecanismo de quimiosorción con R2= 0.9988, qeq= 10.28 mg g-1 y R2= 0.9967, qeq= 128.20 mg g-1, respectivamente. Los datos de equilibrio se ajustaron bien a la isoterma de Langmuir más que a la isoterma de Freundlich y Temkin. Los adsorbentes modificados mostraron eliminación de MB con 88.49 y 74.62 mg g-1 de capacidad de absorción para MNLC y MNLPH, respectivamente. Este estudio mostró un método simple, eficiente y confiable para la eliminación de MB de soluciones acuosas con MNLC y MNLPH como adsorbentes eficientes.


Sign in / Sign up

Export Citation Format

Share Document