scholarly journals Preparation of the Sodium Alginate-g-(Polyacrylic Acid-co-Allyltrimethylammonium Chloride) Polyampholytic Superabsorbent Polymer and Its Dye Adsorption Property

Marine Drugs ◽  
2018 ◽  
Vol 16 (12) ◽  
pp. 476 ◽  
Author(s):  
Shuxian Tang ◽  
Ying Zhao ◽  
Haitao Wang ◽  
Yuqiao Wang ◽  
Hexiang Zhu ◽  
...  

A polyampholytic superabsorbent polymer (PASAP), sodium alginate-g-(polyacrylic acid-co-allyltrimethylammonium chloride) (SA-g-(PAA-co-PTM)), was prepared by free-radical graft copolymerization and characterized. The polymer exhibited pH-dependent swelling behaviors with extremely high swelling ratios, and was saline tolerant. The dye adsorption properties of SA-g-(PAA-co-PTM) were investigated using methylene blue (MB) as a cationic dye model. It was found that its dye adsorption capacity was significantly affected by the TM content in PASAP and pH of dye solution. The dye adsorption kinetics and isotherm obey the pseudo-second-order kinetic model and the Langmuir isotherm model, respectively, and the adsorption process is chemisorption in nature. In addition, SA-g-(PAA-co-PTM) exhibited high MB adsorption capacities in a wide pH range and reusability in at least five adsorption-desorption cycles, indicating its great application potentials as the adsorbent for dye removals from effluents.

2014 ◽  
Vol 71 (2) ◽  
pp. 174-182 ◽  
Author(s):  
Ruihua Huang ◽  
Qian Liu ◽  
Lujie Zhang ◽  
Bingchao Yang

A kind of biocomposite was prepared by the intercalation of chitosan in bentonite and the cross-linking reaction of chitosan with glutaraldehyde, which was referred to as cross-linked chitosan/bentonite (CCS/BT) composite. Adsorptive removal of methyl orange (MO) from aqueous solutions was investigated by batch method. The adsorption of MO onto CCS/BT composite was affected by the ratio of chitosan to BT and contact time. pH value had only a minor impact on MO adsorption in a wide pH range. Adsorption kinetics was mainly controlled by the pseudo-second-order kinetic model. The adsorption of MO onto CCS/BT composite followed the Langmuir isotherm model, and the maximum adsorption capacity of CCS/BT composite calculated by the Langmuir model was 224.8 mg/g. Experimental results indicated that this adsorbent had a potential for the removal of MO from aqueous solutions.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 44 ◽  
Author(s):  
Jun Zhang ◽  
Renjian Deng ◽  
Bozhi Ren ◽  
Mohammed Yaseen ◽  
Andrew Hursthouse

To remove antimony (Sb) ions from water, a novel composite adsorbent was fabricated from ferriferous oxide and waste sludge from a chemical polishing process (Fe3O4@HCO) and encapsulated in sodium alginate (SAB). The SAB adsorbent performed well with 80%–96% removal of Sb (III) ions within a concentration range of 5–60 mg/L. The adsorption mechanism of Sb (III) was revealed to be the synergy of chemisorption (ion exchange) and physisorption (diffusion reaction). The adsorption isotherms and kinetics conformed to the Langmuir isotherm and the pesudo-second-order kinetic model. Both initial pH and temperature influenced the adsorption performance with no collapse of microbeads within solution pH range 3–7. Most importantly for practical applications, these microspheres can be separated and recovered from aqueous solution by a magnetic separation technology to facilitate large-scale treatment of antimony-containing wastewater.


2019 ◽  
Vol 107 (6) ◽  
pp. 459-467 ◽  
Author(s):  
Shuting Zhuang ◽  
Jianlong Wang

Abstract In this study, phosphate functionalized bacterial cellulose with micro-fibrous structure was prepared, characterized and applied for U(VI) adsorption. The successful grafting of phosphoric functional groups was proved by the FTIR spectra and EDS analysis (P~4.15 wt%), and the porous structure was confirmed by SEM and BET analyses. Furthermore, the effect of initial pH, contact time, initial concentration, and temperature were studied. The as-prepared adsorbent showed a high adsorption capacity at wide pH range (4.0–8.0) and its maximum adsorption capacity was calculated to be 50.65 mg/g. This endothermic adsorption process conformed to the pseudo second-order kinetic model and the Elovich kinetic models and the Langmuir isothermal models. According to the FTIR and XPS analysis, an adsorption mechanism was tentatively proposed, mainly due to the interaction between U(VI) and phosphoric groups.


Author(s):  
Mohamed Nasser Sahmoune ◽  
Krim Louhab ◽  
Aissa Boukhiar

Dead streptomyces rimosus was found to be an effective biosorbent for the removal of chromium from industrial tanning effluents. A sorption level of 65 mg/g was observed at pH 4.8 while the precipitation effect augmented this value at a higher pH range. Chromium desorption increased with decreasing desorption agents pH (including HCl and H2SO4) to a maximum value of 95% at approximately zero pH. The biosorption data of trivalent chromium by streptomyces rimosus has been used for kinetic studies based on fractional power, Elovich, pseudo-first order and pseudo-second order rate expressions. The time-dependent Cr (III) biosorption data were well-described by a pseudo-second-order kinetic model. The intraparticle diffusion is not the rate-limiting step for the whole reaction. It was found that the biosorption equilibrium data fit well with the Langmuir model.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


2021 ◽  
Vol 889 ◽  
pp. 91-97
Author(s):  
Suntree Sangjan ◽  
Wadchara Thongsamer

A novel slow-release N-fertilizer hydrogel beads were developed using sodium alginate (SA) and alginate-talcum (ST) composite as N-absorbent. In this work, the hydrogel composite were fabricated by simple method and low cost. N-fertilizer hydrogel beads were prepared two types, for SA types, which were different sodium alginate (1(SA1), 3(SA3), 5(SA5), 7(SA7), and 10(SA10) wt%). And, for ST types, sodium alginate and talcum were vary ratios to 1:0.5(S1T0.5), 1:1(S1T1), and 1:2 (S1T2). The chemical structure of hydrogel composite beads were characterized via Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The release behavior were investigate by Zero-order kinetic model, First-order kinetic model, Higuchi model and Korsmeyer-Peppas model. We have found that the N-fertilizer release constants in Korsmeyer-Peppas model were decrease with increase SA content for 1-5 wt% in SA hydrogel beads. However, SA contents were more than 5 wt% which rapidly enhanced fertilizer release. In addition, to add talcum in ST hydrogel beads significantly reduced fertilizer release rate. The N-fertilizer hydrogel beads exhibits significantly slow release behavior. These results indicates that the development of slow-release fertilizer hydrogel beads can be improve the effectiveness of N-fertilizer.


Author(s):  
Xin Lu ◽  
Beibei Tang ◽  
Qi Zhang ◽  
Lizhu Liu ◽  
Ruqin Fan ◽  
...  

Batch experiments were conducted to investigate the adsorption characteristics of tetracycline (TC), and the interactive effects of copper (Cu) on the adsorption of TC onto water hyacinth roots. TC removal efficiency by water hyacinth roots was ranging from 58.9% to 84.6%, for virgin TC, 1:1 TC-Cu and 1:2 TC-Cu. The Freundlich isotherm model and the pseudo-second-order kinetic model fitted the adsorption data well. Thermodynamics parameters ΔG0 for TC were more negative in the TC plus Cu than the TC-only treatments, indicating the spontaneity of TC adsorption increased with increasing of Cu concentrations. An elevated temperature was associated with increasing adsorption of TC by water hyacinth roots. The additions of Cu(II) significantly increased TC adsorption onto water hyacinth roots within the pH range 4 to 6, because copper formed a strong metal bridge between root surface and TC molecule, facilitating the adsorption of TC by roots. However, Cu(II) hindered TC adsorption onto water hyacinth roots on the whole at pH range from 6–10, since the stronger electrostatic repulsion and formation of CuOH+ and Cu(OH)2. Therefore, the interaction between Cu(II) and TC under different environmental conditions should be taken into account to understand the environmental behavior, fate, and ecotoxicity of TC.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Maryam Yazdani ◽  
Hajir Bahrami ◽  
Mokhtar Arami

Chitosan/feldspar biobased beads were synthesized, characterized, and tested for the removal of Acid Black 1 dye from aquatic phases. A four-factor central composite design (CCD) accompanied by response surface modeling (RSM) and optimization was used to optimize the dye adsorption by the adsorbent (chitosan/feldspar composite) in 31 different batch experiments. Independent variables of temperature, pH, initial dye concentration, and adsorbent dose were used to change to coded values. To anticipate the responses, a quadratic model was applied. Analysis of variance (ANOVA) tested the significance of the process factors and their interactions. The adequacy of the model was investigated by the correlation between experimental and predicted data of the adsorption and the calculation of prediction errors. The results showed that the predicted maximum adsorption amount of 21.63 mg/g under the optimum conditions (pH 3, temperature 15°C, initial dye concentration 125 mg/L, and dose 0.2 g/50 mL) was close to the experimental value of 19.85 mg/g. In addition, the results of adsorption behaviors of the dye illustrated that the adsorption process followed the Langmuir isotherm model and the pseudo-second-order kinetic model. Langmuir sorption capacity was found to be 17.86 mg/g. Besides, thermodynamic parameters were evaluated and revealed that the adsorption process was exothermic and favourable.


2017 ◽  
Vol 75 (10) ◽  
pp. 2316-2321 ◽  
Author(s):  
Hao Peng ◽  
Zuohua Liu ◽  
Changyuan Tao

Melamine, possessing three free amino groups and three aromatic nitrogen atoms in its molecule, has great potential as an adsorbent for metal ions. We investigated three impact factors of the adsorption process: the initial pH of the vanadium solution, contact time and reaction temperature. The adsorption kinetics could be accurately described by the pseudo-second-order kinetic model. Langmuir and Freundlich models fitted well with the experimental equilibrium data, and the maximal adsorption capacity was found to be 1,428.57 mg vanadium/g melamine, and the Freundlich model showed the adsorption is privilege type.


2019 ◽  
Vol 62 (3) ◽  
Author(s):  
Naereh Besharati ◽  
Nina Alizadeh ◽  
Shahab Shariati

Abstract. This study was focused on the adsorption of methylene blue (MB) as a cationic dye on magnetite nanoparticles loaded with coffee (MNLC) and magnetite nanoparticles loaded with peanut husk (MNLPH) as naturally cheap sources of adsorbent. Coffee and Peanut husk were magnetically modified by contact with water-based magnetic fluid. These new type of magnetically natural materials can be easily separated by means of magnetic separators. They were characterized with Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) instruments. Different parameters affecting MB removal efficiency such as contact time, pH of solution and amount of adsorbents were studied and optimized. Dye adsorption process was studied from both kinetic and equilibrium point. The studies of MB sorption kinetic showed rapid dynamic sorption with second-order kinetic model, suggesting chemisorption mechanism with R2 = 0.9988, qeq=10.28 mg g-1 and R2=0.9967, qeq=128.20 mg g-1, respectively. Equilibrium data were fitted well to the Langmuir isotherm more than Freundlich and Temkin isotherm. The modified adsorbents showed MB removal with 88.49 and 74.62 mg g-1 sorption capacity for MNLC and MNLPH, respectively. This study showed a simple, efficient and reliable method for removal of MB from aqueous solutions with MNLC and MNLPH as efficient adsorbents. Resumen. Este estudio se centró en la adsorción de azul de metileno (MB) como un colorante catiónico en nanopartículas de magnetita cargadas con café (MNLC) y nanopartículas de magnetita cargadas con cáscara de cacahuete (MNLPH) como fuentes de adsorbente naturalmente económicas. El café y la cáscara de maní se modificaron magnéticamente por contacto con un fluido magnético a base de agua. Este nuevo tipo de materiales magnéticamente naturales se puede separar fácilmente mediante separadores magnéticos. Se caracterizaron con espectroscopia infrarroja de transformada de Fourier (FT-IR), difracción de rayos X en polvo (DRX) y microscopía electrónica de barrido (SEM). Se estudiaron y optimizaron diferentes parámetros que afectan la eficiencia de eliminación de MB, como el tiempo de contacto, el pH de la solución y la cantidad de adsorbentes. Se estudió el proceso de adsorción de tinte desde el punto de equilibrio y cinético. Los estudios de cinética de absorción de MB mostraron una absorción dinámica rápida con un modelo cinético de segundo orden, lo que sugiere un mecanismo de quimiosorción con R2= 0.9988, qeq= 10.28 mg g-1 y R2= 0.9967, qeq= 128.20 mg g-1, respectivamente. Los datos de equilibrio se ajustaron bien a la isoterma de Langmuir más que a la isoterma de Freundlich y Temkin. Los adsorbentes modificados mostraron eliminación de MB con 88.49 y 74.62 mg g-1 de capacidad de absorción para MNLC y MNLPH, respectivamente. Este estudio mostró un método simple, eficiente y confiable para la eliminación de MB de soluciones acuosas con MNLC y MNLPH como adsorbentes eficientes.


Sign in / Sign up

Export Citation Format

Share Document