scholarly journals Impacts of graywater irrigation and soil conditioning with mulch on cotton growth and soil properties

2018 ◽  
Vol 19 (4) ◽  
pp. 1080-1087
Author(s):  
Z. Sheng ◽  
S. Abudu ◽  
G. Ganjegunte

Abstract Field experiments were conducted to evaluate the impacts of graywater irrigation with and without soil conditioning with mulching on cotton growth and soil properties in El Paso, Texas, USA. Treatments included in the study were: freshwater irrigation without soil conditioning (control, treatment T0), freshwater irrigation with soil conditioning (treatment T1), graywater irrigation without soil conditioning (treatment T2) and with soil conditioning (treatment T3) with four replications. The pH, sodium absorption ratio (SAR) and electrical conductivity (EC) values of the graywater used in the study were 8.19, 16.0 and 1.54 dS/cm respectively. Results showed that graywater irrigation did not have significant impacts on cotton growth and lint yield. Soil conditioning with mulch increased cotton yield significantly (p < 0.05) compared with non-mulching regardless of water types. Graywater irrigation increased soil pH values significantly in the surface depth (0–15 cm), however, it did not have significant effects at greater depths (>15 cm). Significantly higher salinity and sodicity were observed in the upper 30 cm depths in the graywater irrigated mulched soils, while no changes were detected at greater depths (30–45 and 45–60 cm).

Soil Research ◽  
2004 ◽  
Vol 42 (7) ◽  
pp. 825 ◽  
Author(s):  
W. K. Gardner

Changes in soil properties caused by irrigation with saline groundwater (approx. 2 dS/m) containing excess bicarbonate were measured on Vertosols and Sodosols in the West Wimmera, Victoria, Australia. Irrigation caused soil pH to increase, and where this had risen sufficiently (approx. 8.0), the sodium absorption ratio (SAR) of 1 : 5 soil extracts also increased, presumably due to precipitation of calcium and magnesium carbonates. Salt only accumulated when the SAR of 1 : 5 soil extracts was high. In contrast to previous studies, SAR of the soil extracts was not correlated with exchangeable sodium percentage (ESP) of the exchange complex, nor with soil pH. SAR values rose with irrigation once pH exceeded 8, suggesting that carbonate formation was incomplete due to insufficient bicarbonate. The results imply that gypsum application may ameliorate soil properties even if amounts applied are not sufficient to alter ESP.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2024
Author(s):  
Tamer Khalifa ◽  
Mohssen Elbagory ◽  
Alaa El-Dein Omara

The use of phosphogypsum (PG) and plant growth-promoting rhizobacteria (PGPR) for agricultural purposes are good options to improve soil properties and increase crop yield. The objective of this study was to investigate the effect of different rates of PG (ton ha−1; 0 (PG1), 3 (PG2), 6 (PG3), and 9 (PG4)) combined with PGPR inoculation (Azospirillum lipoferum (control, T1), A. lipoferum + Bacillus coagulans (T2), A. lipoferum + B. circulance (T3), and A. lipoferum + B. subtilis (T4)) on soil properties, plant physiology, antioxidant enzymes, nutrient uptake, and yield of maize plants (Zea mays L., cv. HSC 10) grown in salt-affected soil. Over two growing seasons, 2019 and 2020, field experiments were conducted as a split-plot design with triplicates. The results show that applying PG (9 ton ha−1) and co-inoculation (A. lipoferum + B. circulance) treatment significantly increased chlorophyll and carotenoids content, antioxidant enzymes, microbial communities, soil enzymes activity, and nutrient contents, and showed inhibitory impacts on proline content and pH, as well as EC and ESP, thus improving the productivity of maize plant compared to the control treatment. It could be concluded that PG, along with microbial inoculation, may be an important approach for ameliorating the negative impacts of salinity on maize plants.


Author(s):  
Chương Nguyễn Văn ◽  

The study on the effect of earthworm manure and HI-BORON 7-14 foliar fertilizer on chemical properties of soil and yield of rice OM18 was conducted in the Winter-Spring and Summer-Autumn seasons 2019-2020. The field experiments included four treatments and four replications in Long Xuyen City, An Giang province. Each treatment was the area of 48 m2 (8 m x 6 m). Treatments of season 1 (Winter-Spring) included: The control treatment (NT1) only applied NPK (85 kg N - 45 kg P2O5 - 45 kg K2O); (NT2): Incorporation of NPK and Hi-Boron 7-14 foliar fertilizer; (NT3): Incorporation of NPK and earthworm manure Atiga (300 kg ha-1); (NT4): Incorporation of NPK, earthworm manure Atiga (300kg ha-1) and Hi-Boron 7-14 foliar fertilizer. Treatments of season 2 (Summer-Autumn) were carried on the former experiment 1. However, treatments did not apply earthworm manure Atiga and spray Hi-Boron 7-14 foliar fertilizer (only applied 85 kg N-45 kgP2O5-45kg K2O). The results showed that the application of NPK, earthworm manure Atiga (300 kg ha-1) and Hi-Boron 7-14 foliar fertilizer improved organic matter, total nitrogen, available phosphorous and available potassium in soil. On the other hand, the combined fertilization increased the yield of rice OM 18 (11,3%) compared to the control treatment (without applying earthworm manure Atiga and spray Hi-Boron 7-14 foliar fertilizer). In Winter-Spring, the yield of rice OM18 in applying earthworm manure Atiga and spray Hi-Boron 7-14 foliar fertilizer had higher than 14,9% compared with applying only NPK in the Summer-Autumn season in the same treatment. The soil properties were not much improved due to no additional application of earthworm manure Atiga and spraying foliar fertilizer.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Elsiddig Eldaw ◽  
Tao Huang ◽  
Adam Khalifa Mohamed ◽  
Yahaya Mahama

AbstractDeterioration of groundwater quality due to drastic human interventions is rising at an alarming rate particularly in lower- and middle-income countries. Yet, limited research effort has been devoted to monitoring and ascertaining groundwater quality. The present study develops a comprehensive irrigation water quality index (IWQI) for rating water quality of shallow and deep aquifers in North Kurdufan province, Sudan. The new approach is developed to overcome the deficiencies of the existing irrigation indices and coming up with a unified decision for classifying water quality for irrigation purposes. Because of these indices like permeability index (PI), sodium absorption ratio (SAR), etc., depending on specific elements, entirely subjective, as well as the great variations in their results, particularly when classifying water quality. Thus, IWQI is created based on eight indices that are generally used to evaluate irrigation water quality, plus three physicochemical parameters have been proven an impact on water quality. The analytic hierarchy process (AHP) is applied to minimize the subjectivity at assign parameter weights under multiple criteria decision analysis tools (MCDA). The spatial distribution of IWQI agrees with the spatial distribution of the most parameters. The results of our approach reveal that the majority of samples are suitable for irrigation uses for both aquifers except few wells in the confined aquifer. Also, noted that there are very variations in the irrigation indices results for classifying water quality. The comparison result showed that the new index robust, fair calculations and has best classifying of water quality.


2018 ◽  
Vol 38 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Sihem Hedjal ◽  
Derradji Zouini ◽  
Abdelwaheb Benamara

AbstractThe wetland complex of Guerbes-Sanhadja (north-eastern Algeria), has experienced in recent years a certain economic expansion, particularly agricultural, about 47% of the useful agricultural area marked by several varieties of crops ranging from market gardening to speculative crops, requiring large quantities of water for irrigation purposes, however the swampy areas are the main sources used for irrigation purposes in this practice. It is therefore necessary for this water to have physicochemical properties adapted to plants, in particular the absence of salinity. This study was done to evaluate the status of the swamps areas quality and its suitability for irrigated agriculture. To achieve this objective, water samples from ten swamps areas water were collected from Guerbes-Sanhadja in February and June of 2016. The water quality of these swamps was estimated from different water quality parameters such as pH and electrical conductivity (EC), the chemical parameters like Na+, K+, Ca2+, HCO3−, SO42−, Cl−, BOD5, NO3−, NO2−, NH4+ and PO43−. Based on the physico-chemical analyses, irrigation quality parameters like sodium absorption ratio (SAR), percent sodium (% Na), residual sodium carbonate (RSC), permeability index (PI), magnesium hazard (MH) were calculated. The results showed that the overall concentration of nitrate was very high. About 60 percent of the swampy areas had suitable water quality for chloride, and they had a concentration below the permissible limit for crop irrigation. From the Richards diagram, it is observed that most of the samples from the study area fall in the good to permissible classes for irrigation purpose.


2021 ◽  
Vol 36 ◽  
pp. 03003
Author(s):  
Yakhiya Kaipov ◽  
Rifkat Akchurin ◽  
Rustam Kirayev ◽  
Asiya Nizaeva

Field experiments were conducted in the arid steppe zone of the Southern Urals, in the Republic of Bashkortostan of the Russian Federation. The soil is common chernozem. The precipitation during the growing season (May-September) is 166 mm. The experimental crop rotation consisted of 7 fields: 4 with perennial herbs (a mixture of Bromus inermis and Medicago varia), 3 with annual crops. The study analysed soil properties and carrying capacity in perennial grass rotation, conventional and reduced tillage. During the crop-pasture rotation, the humus content in the soil changes insignificantly depending on the tillage, being within 7.6-8.0 %. Perennial grasses loosened the soil, positively affecting moisture accumulation under crop rotation by the beginning of the pre-sowing period. The arable layer of common chernozem in the reduced tillage had a density of 1.05 g/cm3, less than 0.06 g/cm3 in conventional cultivation. Fertilizer application increased yields at 0.49-0.51 t/ha of feed units. Reduced tillage resulted in higher feed units by 0.06-0.08 tons per 1 ha. Crop-pasture rotation implementation and development ensures bioclimatically-determined yields of fodder crops and maintains soil fertility at an optimal level.


2021 ◽  
Author(s):  
Eman G. Sayed ◽  
Mona A. Ouis

Abstract A new glass fertilizer (GF) system of main composition 60P2O5.30K2O.3.5ZnO. 3.5MnO.3Fe2O3 was developed in response to the needs of pea plants with bio-fertilizers (Rhizobium leguminosarum. Bv.vicieae, Bacillus megaterium var phosphaticum, Bacillus circulans).GF was prepared by the traditional melt quenching technique at 1150°C. Characterization of prepared system was done using FTIR spectra before and after immersion in a simulated actual agriculture medium like 2% citric acid and distilled water. During two winter seasons, two successful field experiments were conducted at Cairo University's Eastern Farm to determine the impact of chemical, glass, and bio-fertilizers on plant growth, yield attributes, and seed quality of pea plant. Control treatment were without any addition of recommended chemical fertilizers and other treatments were full dose of recommended chemical fertilizers (100%RDF), glass fertilizers at rate 60 kg fed− 1, Glass fertilizers at rate30 kg fed− 1, 50% RDF ,100%RDF + bio-fertilizers, Glass fertilizers at rate 60 kg fed− 1 + bio-fertilizers, glass fertilizers at rate 30 kg fed− 1+ bio-fertilizers, 50%RDF + bio-fertilizers. Plots received 60 kg fed− 1 glass fertilizers + bio-fertilizers show the highest significant increment in plant growth, number and weight of pods plant− 1, number of grain pods− 1, grain yield, biological yield, P%, k% in pea leaves and quality of pea seeds compared with plots without any addition (control) in both seasons.


2021 ◽  
Vol 1 (42) ◽  
pp. 109-115
Author(s):  
Binh Phan Khanh Huynh ◽  
Tho Van Nguyen ◽  
Vien My Tran

This study aimed to use charcoal derived from the bamboo and melaleuca produced by traditional kiln applied to sandy soil growing mustard green (Brassica juncea L.). The charcoals were applied at three ratio (1%,2%, and 3%, which correspond to 10, 20, and 30 g charcoal/kg soil in pots) and the control treatment without charcoal. Soil properties were investigated including bulk density, pH, electrical conductivity (EC), cation exchange capacity (CEC), organic matter content, total nitrogen, and total phosphorous. The results showed that bulk density decreased in charcoal-treated soils. pH and EC were in the suitable range for plants.Nutrients and CEC of the soil in the charcoal treatment were significantly higher compared with the control (CEC increase 6.8% to 16%; TC increase 80% to 115%; TN increase 37.5 to 75%). Green mustard growing on charcoalamended soil had greater height (higher 3% to 21%), bigger leaves, and higher yield (increase18% to 81%) than those of plants groomed in the control treatment. This study showed the potential of using charcoal as supplying nutrient to the poor soil. Moreover, the abundant of raw material and easy to produce, it is suitable for applying in the Mekong Delta, Viet Nam, and other countries with similar conditions and infrastructure. 


Author(s):  
Grigoriy Leonidovich Belov ◽  
Vladimir Nikolaevich Zeyruk ◽  
Vladimir Anatolyevich Barkov ◽  
Marina Konstantinovna Derevyagina ◽  
Svetlana Viktorovna Vasilieva

In field experiments in the conditions of sod-podzolic sandy loam soils of the Moscow region, protectants were tested. Before planting potatoes, tubers were treated with a new two-component insectofungicide AVG – 0190 (Idikum, SC, iprodion, 133 g/l + Imidacloprid, 100 g/l + diphenoconazole, 6.7 g/l)-1.0 – 1.5 l/t and a mixture of the fungicide Syncler, SC (75 g/l fludioxonyl) and the insecticide Tabu Super, SC (Imidacloprid, 400 g/l and fipronil, 100 g/l)-0.2-0.3 l/t. According to the results of three-year tests, it was found that the etching of potato tubers before planting does not have a negative impact on the germination and biometric indicators of growth and development of potatoes. Their use helped to reduce the development and spread of rhizoctoniosis and provided almost complete protection of potatoes from the first generation of the Colorado beetle – during the mass appearance of older larvae and during the beginning of the departure of larvae for pupation. Biological efficacy against Rhizoctonia amounted to 58.8-66,3%, the Colorado potato beetle – 93,7 95.5 per cent. The use of new potato tuber protectants allowed to increase the gross yield by 6.2-7.1 t / ha or 30.9-35.3% compared to the control. Treatment of seed tubers with protectants helped to obtain a crop free from rhizoctoniosis and increase the yield of standard healthy potatoes by 57.7


2001 ◽  
Vol 31 (6) ◽  
pp. 1084-1092 ◽  
Author(s):  
Urban Bergsten ◽  
France Goulet ◽  
Tomas Lundmark ◽  
Mikaell Ottosson Löfvenius

Vertical uplift of seedlings and rods on the soil surface and at a depth of 5 cm, and of reference trees, was monitored using a theodolite from autumn to spring in two adjacent field experiments on a silt soil in northern Sweden. Treatments involving scarification (control and square patches of 0.1, 0.2, 0.4, and 0.8 m at natural snow cover) and snow cover (simulated maximum cover, snow free, and natural cover for control and 0.4-m patches) were compared. For snow free and natural snow cover, diurnal variation of soil surface temperature, duration and magnitude of freezing temperatures, and uplift increased with patch size. At the end of the winter under natural snow cover, uplift of the soil surface and shallow soil was between 4.4 and 5.3 cm for the control treatment without scarification and the 0.1-m patch while the uplift for the 0.4- and 0.8-m patches reached 7.6–11.5 cm. The highest uplift value, 14.6 cm, was observed for the snow-free treatment with 0.4-m patches. Maximum uplift of trees averaged 4.4 cm, which was similar to values observed for seedlings and rods with an intact humus layer and a natural snow cover, indicating that the highest observed uplift was mainly due to needle and soil surface ice. In conclusion, size of the scarified area and duration and thickness of snow cover largely influence frost heaving of tree seedlings in a susceptible soil.


Sign in / Sign up

Export Citation Format

Share Document