scholarly journals Assessment of water resources system in Qena governorate, Upper Egypt under different hydrological and agronomic conditions

Author(s):  
Mohie El Din M. Omar ◽  
Marwa M. Aly

Abstract This paper assessed the current water resources system and two future scenarios in Qena governorate by developing Water Balance (WB Model) and Water Security Quality-based Index (WSQI). First scenario presented 25% reduction in Nile flow, while second scenario suggested adaptation measures to comply with flow reduction. The measures included leveling 100,000 feddans, serving 70,000 feddans with sprinkler irrigation, and lining 2,977 km of canals. The WB Model estimated water balance components. The WSQI was a new index suitable for Egypt's conditions considering water quality. The water supply from High Aswan Dam (HAD) was predicted by the BlueM model for hydrological simulations of Nasser Lake. The study found that the current water shortage was fulfilled by drainage reuse and shallow groundwater, and the WQSI indicated a low water insecurity. The flow reduction increased water shortage and reuse quantity. As a result, the WSQI indicated high water insecurity. The suggested measures improved agricultural water use efficiency from 51% to 63%, reduced water shortage, and improved water insecurity level from high to medium. This study concluded that adaptation measures can improve the future water system and water security in Qena governorate. The study recommended upscaling WSQI use for the entire country.

2016 ◽  
Vol 20 (7) ◽  
pp. 2877-2898 ◽  
Author(s):  
Hannes Müller Schmied ◽  
Linda Adam ◽  
Stephanie Eisner ◽  
Gabriel Fink ◽  
Martina Flörke ◽  
...  

Abstract. When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901–2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971–2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non-calibrated regions, respectively. These simulation results support the need for extended Q measurements and data sharing for better constraining global water balance assessments. Over the 20th century, the human footprint on natural water resources has become larger. For 11–18% of the global land area, the change of Q between 1941–1970 and 1971–2000 was driven more strongly by change of human water use including dam construction than by change in precipitation, while this was true for only 9–13 % of the land area from 1911–1940 to 1941–1970.


2021 ◽  
Vol 264 ◽  
pp. 03049
Author(s):  
Feruzbek Karimboev ◽  
Daulet Gulomov ◽  
Zarina Tillayeva

Ecosystem vulnerability increases significantly when anthropogenic factors overlap with the effects of adverse climate change, which together negatively affect biodiversity and ecosystem functioning. According to ADB forecasts, the inflow to the lower reaches of the Amu Darya will decrease by 26-35% by 2050. The combined effect of higher water demand and lower inflow will increase the current water shortage - the annual water shortage will increase to 50% of the total demand. In connection with the projected changes, the current state of water resources of the Amu Darya river, as well as the need for the socioeconomic development of the region, the task of assessing the projected impact of climate change on the availability and quality of water resources becomes urgent.


2020 ◽  
Author(s):  
Athina Angeli ◽  
Eleni Karkani ◽  
Angelos Alamanos ◽  
Stefanos Xenarios ◽  
Nikitas Mylopoulos

<p>Water security poses one of the biggest challenges of the century. It is a versatile problem, going beyond the traditional concepts of hydrology and water quality. It is difficult to give a single definition, since water security signifies a "safe operating subspace" within a multi-dimensional space that maps physical resource availability, water quality, demand, infrastructure and economic choices. The main idea of water security, as addressed in the present study, is the need to balance human and environmental water needs.</p><p>In arid and semi-arid areas, including Greece, intensification of agriculture accompanied with poor management is a common phenomenon. These attempts to meet economic and productive objectives, combined with the physical characteristics of these areas, has led to quantitative and qualitative water degradation, questioning the sustainability of water resources. In Greece, the Ministry of Environment Management Plans found that only 1 or 2 cases in the country are in “a good status”. This study aims to propose a way towards integrated and sustainable management, through hydro-economic tools: water balance, profits from agricultural activities, water value, and water quality. Water security is examined based on these terms in several Greek rural watersheds.</p><p>The methodology consists of the estimation of water availability, water demand, and thus water balance in surface and groundwater resources. The profits from the agricultural activities are estimated from a straightforward economic model, based on the gross profits and production costs. Water quality is based on measurements on concentrations of fertilizers, chemical parameters and pesticides, and its improvement is examined through the quantitative replenishment due to several strategies exploiting dilution processes in surface and groundwater. The analysis used data from the period 2005-2015, and a set of management scenarios were examined, suggesting technical measures (e.g. reducing losses, improving irrigation methods) and crop replacement scenarios, taking into account factors affecting these decisions, and also the Ministry’s recommendations. The water value was calculated using the “change of the net-income” method. All the above factors’ results indicate the degradation of the examined areas.</p><p>More specifically, the watersheds of Lake Karla, Almyros, Koronia, and Loudia were selected as the most representative cases. These watersheds seem to have limited water availability, intensified agriculture, poor water quality and management issues. The Lake Karla watershed is characterized from overexploited surface and groundwater resources, Loudia and Koronia watersheds face the same issues plus a strong qualitative degradation, Almyros watershed main issue is the salinization of its coastal aquifer. In conclusion, the first steps that are introduced in this study can be a starting point for more integrated water security management, helping local water managers understand and address the above issues.</p><p>Overall, it is a novel attempt to integrate all the above parameters in one framework, for a ten-year horizon, and comparing rural Greek case studies. Non-comparable factors also exist among different case studies, which are discussed, however the evidences support the finding of the general degradation and unsustainable management in the country.</p><p><strong>KEYWORDS:</strong> Water Security, agricultural watersheds, Greece, Water Resources Management, Hydro-economic modeling, water quality, scenario analysis.</p>


2020 ◽  
Vol 23 ◽  
Author(s):  
Rosa Maria Formiga-Johnsson ◽  
Ana Lucia Britto

Abstract In this article the authors assess the current level of water security of the population of the Rio de Janeiro metropolis supplied by the Guandu System. It sets out from the premise that water security is only achieved when universal access to water is ensured - that is, when water resources are available, in adequate quantity and quality, along with water services that guarantee the human right to safe drinking water. Based on previous research, a review of the literature and official documents, it was possible to adapt and apply an analytic schema to the case study in order to evaluate the level of water security. The authors conclude that there are many risks associated with the water resources, including climate stressors, but it is the performance of the water supply service that most jeopardizes the current water security of the population of the Rio de Janeiro metropolis; the availability of water resources, both current and future, is not an obstacle to universal access to water.


Water resources planning and management of a region requires an understanding of the water balance in the region. The Soil and Water Assessment Tool (SWAT) with QGIS interface (QSWAT) has been used here to arrive at the water balance components in the Palapuzha watershed of Valapattanam river basin in Kerala. Valapattanam river drains an area of 1867 sq.km. with 456 sq.km. area in Karnataka State. The river basin receives an average annual rainfall of 3600 mm. The Palapuzha watershed drains an area of 237.25 sq.km with an average annual rainfall of 4562 mm. The QSWAT model has been calibrated and validated using data for a period of eight years (2000-2007) for which both rainfall and streamflow data are available. The model was successful in simulating monthly streamflow during the calibration and validation periods with Nash Sutcliffe efficiency and correlation co-efficient greater than 0.75 and percent bias less than 10%, showing that the model is very good for predicting streamflow in Valapattanam river basin. This calibrated model was used to arrive at the different water balance components in the Palapuzha watershed. The results obtained will be useful for the sustainable development and planning of the water resources system in the highland humid tropical watersheds


2021 ◽  
Author(s):  

Энэхүү нийтлэл нь Монгол Улсын усны аюулгүй байдлыг үнэлж, бусад баримт бичиг, судалгаан дээр үндэслэн дүн шинжилгээ хийх замаар боловсруулсан үндэсний хэмжээний усны нөөцийн тогтолцоо ба менежментийн талаарх олон талт тойм судалгааг агуулсан болно.


2021 ◽  
Author(s):  
Wendy Sharples ◽  
Andrew Frost ◽  
Ulrike Bende-Michl ◽  
Ashkan Shokri ◽  
Louise Wilson ◽  
...  

<p>Ensuring future water security in a changing climate is becoming a top priority for Australia, which is already dealing with the ongoing socio-economic and environmental impacts from record-breaking bushfires, infrastructure damage from recent flash flooding events, and the prospect of continuing compromised water sources in both regional towns and large cities into the future. In response to these significant impacts the Australian Bureau of Meteorology is providing a hydrological projections service, using their national operational hydrological model (The Australian Water Resources Assessment model: AWRA-L, www.bom.gov.au/water/landscape), to project future hydrological fluxes and states using downscaled meteorological inputs from an ensemble of curated global climate models and emissions scenarios at a resolution of 5km out to the end of this century.</p><p>Continental model calibration using a long record of Australian observational data has been employed across components of the water balance, to tune the model parameters to Australia's varied hydro-climate, thereby reducing uncertainty associated with inputs and hydrological model structure. This approach has been shown to improve the accuracy of simulated hydrological fields, and the skill of short term and seasonal forecasts. However, in order to improve model performance and stability for use in hydrological projections, it is desirable to choose a model parameterization which produces reasonable hydrological responses under conditions of climate variability as well as under historical conditions. To this end we have developed a two-stage approach: Firstly, a variance based sensitivity analysis for water balance components (e.g. ephemeral flow, average to high flow, recharge, soil moisture and evapotranspiration) is performed, to rank the most influential parameters affecting water balance components. Parameters which are insensitive across components are then fixed to a previously optimized value, decreasing the number of calibratable parameters in order to decrease dimensionality and uncertainty in the calibration process. Secondly, a model configured with reduced calibratable parameters is put through a multi-objective evolutionary algorithm (Borg MOEA, www.borgmoea.org), to capture the tradeoffs between the water balance component performance objectives under climate variable conditions (e.g. wet, dry and historical) and across climate regions derived from the natural resource management model (https://nrmregionsaustralia.com.au/).</p><p>The decreased dimensionality is shown to improve the stability and robustness of the existing calibration routine (shuffled complex evolution) as well as the multi-objective routine. Upon examination of the tradeoffs between the water balance component objective functions and in-situ validation data under historical, wet and dry periods and across different Australian climate regions, we show there is no one size fits all parameter set continentally, and thus some concessions need to be made in choosing a suitable model parameterization. However, future work could include developing a set of parameters which suit specific regions or climate conditions in Australia. The approach outlined in this study could be employed to improve confidence in any hydrological model used to simulate the future impacts of climate change. </p>


2005 ◽  
Vol 51 (5) ◽  
pp. 121-131 ◽  
Author(s):  
J. Aerts

This paper focuses on a methodology called ‘generic adaptation methodology for river basins’ (AMR) that provides guidance to water managers seeking: (1) potential adaptation measures to climate change and climate variability, (2) measuring impacts, and (3) evaluating adaptations. The methodology uses basic elements addressed in existing adaptation research and is designed for a participatory setting involving various stakeholders. In AMR, the water resources system is seen as an economic asset that provides ‘goods and services’ for both humans and ecosystems. The innovative aspect of AMR is that it distinguishes impacts to water management objectives and impacts to the physical state of water resources in a river basin in a relatively simple iterative approach. Both impact types are quantified using indicators. The framework and results are demonstrated for a case study in the Walawe basin (Sri Lanka). It is explained that actually implementing adaptations in policy making can be difficult in trans-boundary river basins as each riparian country has its own policy objectives and hence ways of dealing with adaptation.


2016 ◽  
Author(s):  
H. Müller Schmied ◽  
L. Adam ◽  
S. Eisner ◽  
G. Fink ◽  
M. Flörke ◽  
...  

Abstract. When assessing global water resources with hydrological models, it is essential to know the methodological uncertainties in the water resources estimates. The study presented here quantifies effects of the uncertainty in the spatial and temporal patterns of meteorological variables on water balance components at the global, continental and grid cell scale by forcing the global hydrological model WaterGAP 2.2 (ISI-MIP 2.1) with five state-of-the-art climate forcing input data-sets. While global precipitation over land during 1971–2000 varies between 103 500 and 111 000 km3 yr−1, global river discharge varies between 39 200 and 42 200 km3 yr−1. Temporal trends of global water balance components are strongly affected by the uncertainty in the climate forcing (except human water abstractions), and there is a need for temporal homogenization of climate forcings (in particular WFD/WFDEI). On about 10–20 % of the global land area, change of river discharge between two consecutive 30 year periods was driven more strongly by changes of human water use including dam construction than by changes in precipitation. This number increases towards the end of the 20th century due to intensified human water use and dam construction. The calibration approach of WaterGAP against observed long-term average river discharge reduces the impact of climate forcing uncertainty on estimated river discharge significantly. Different homgeneous climate forcings lead to a variation of Q of only 1.6 % for the 54 % of global land area that are constrained by discharge observations, while estimated renewable water resources in the remaining uncalibrated regions vary by 18.5 %. Uncertainties are especially high in Southeast Asia where Global Runoff Data Centre (GRDC) data availability is very sparse. By sharing already available discharge data, or installing new streamflow gauging stations in such regions, water balance uncertainties could be reduced which would lead to an improved assessment of the world's water resources.


Water Policy ◽  
2006 ◽  
Vol 8 (2) ◽  
pp. 97-110 ◽  
Author(s):  
Can Wang ◽  
Camilla Dunham Whitehead ◽  
Jining Chen ◽  
Xiaomin Liu ◽  
Junying Chu

Beijing is facing the considerable challenge of water shortage, as it is just able to meet current water demand in a year with average precipitation and a shortfall between water supply and demand is estimated to be around 1.8 billion[109] cubic meters (BCM) by 2010. Aiming to find the solution to such a severe challenge, this paper investigates Beijing's current and future water resources availability and water-use configurations, as well as past and current effort on both areas of water supply and demand. The analysis shows a continuously growing demand for water and an aggravating deficit of traditionally available water resources. The paper concludes that it is necessary to establish well-structured water-use data and employ more advanced forecasting methods if sound future decisions regarding water balance are expected to be made. In order to realize Beijing Municipality's full urban water conservation potential, it is suggested that a comprehensive and integrated long-term conservation program be implemented, which is technically feasible and economically justified, to conserve water consistently for many years.


Sign in / Sign up

Export Citation Format

Share Document