Commercialization of Pressurized Electroosmotic Dehydrator (PED)

1990 ◽  
Vol 22 (12) ◽  
pp. 259-268 ◽  
Author(s):  
S. Kondoh ◽  
M. Hiraoka

Application of electroosmosis to conventional filter press dehydrators has been studied to decrease water content in the sludge generated from waste water treatment process. Experiments realized the reduction of water content in the biological excess activated sludge down to 50-60%, which had never been achieved by the conventional dewatering method. The new method has been commercialized by pre-concentration of the excess activated sludge, addition of electrolyte, and development of special carbon electrodes. Moreover, observation using a scanning electron microscope enabled us to demonstrate the suitability of the PED process to the excess activated sludge. The newly-developed dehydrators and processes have been operating successfully at three commercial plants for the first time in the world.

1992 ◽  
Vol 25 (7) ◽  
pp. 383-394 ◽  
Author(s):  
G. Garuti ◽  
M. Dohanyos ◽  
A. Tilche

Results of a three year experience on a combined anaerobic-anoxic-oxic municipal waste water treatment process - named ANANOX® - are presented. This process demonstrated to be highly efficient, with 89.6% CODt, 89.2% TSS and 81.2% N removal, and a sludge production of only 0.2 kg TSS.kg COD removed−1, a value which is roughly 50% less if compared with traditional nitrification/denitrification processes. Sulphates play a very significant role in the process because, after being reduced in the anaerobic step, where they give a contribution to the organic matter degradation, they are reoxidized in the anoxic step by nitrates, reducing the organic matter need for denitrification. Due to the high dependence of efficiency on temperature, the system proposed has advantageous uses for sewage treatment, particularly in warm climates and in tourist and recreational areas where the population increases during the warm season.


2010 ◽  
Vol 14 (3) ◽  
pp. 747-758 ◽  
Author(s):  
Aleksandra Krkoleva ◽  
Verica Taseska ◽  
Natasa Markovska ◽  
Rubin Taleski ◽  
Vesna Borozan

The paper presents the pilot Microgrid in Macedonia, developed within the framework of the MOREMICROGRIDS (EU EP6 projecet, contract No. SES6-019864) project. This Microgrid is the first of its kind being developed in the Western Balkan region and serves as pilot site for introduction and examination of the Microgrids concept in non European Union conditions. The test network consists of a part of the low voltage grid, located on a pig farm. The main electricity source for the Microgrid is a small biogas plant, which uses the biogas produced by a waste water treatment process. The paper addresses the Microgrid design, development of test scenarios and test results from the pilot location.


2009 ◽  
Vol 69 (4) ◽  
pp. 1059-1071 ◽  
Author(s):  
M. Garcia ◽  
C. Odebrecht

The detailed description of rarely recorded Thalassiosira species in Brazil is presented with light microscope (LM) and scanning electron microscope (SEM) illustrations. A total of 78 phytoplankton net samples (20 µm) collected between the years 2000 and 2006 in coastal waters of southern Brazilian, Cassino Beach and the estuary of Lagoa dos Patos, were studied in cleaned material using the Axiovert Zeiss LM and Jeol 6060 SEM. Water temperature and salinity of samples and six species are presented: Thalassiosira endoseriata, T. hendeyi, T. lundiana, T. minuscula, T. oceanica and T. wongii. Two species, Thalassiosira hendeyi and T. endoseriata were the most common being observed in all seasons at Cassino Beach in a wide temperature range (10-26 ºC), while only sporadically in the estuary of Lagoa dos Patos. Thalassiosira endoseriata, T. lundiana, T. oceanica and T. wongii are for the first time reported in Brazilian coastal waters. The latter two species, rarely recorded in the world, are fully illustrated based on Brazilian material.


Author(s):  
Sandipan Prasad Chakravarty ◽  
Aniket Roy ◽  
Prasanta Roy

This paper deals with the design of a pre-compensated multi-variable quantitative feedback theory (QFT)-based fully populated matrix controller for an activated sludge treatment process (ASTP) of a waste water treatment plant (WWTP). The regulation of the concentration of biochemical oxygen demand ([Formula: see text]) and ammonium-ion ([Formula: see text]) is the control objective. The plant dynamics are obtained using physical laws available in the literature. The parametric uncertainty is quantified from the measurement data obtained from a real ASTP of an oil refinery. The model is duly cross-validated. A novel technique is proposed to design a pre-compensator that will enhance the diagonal dominance of the plant transfer function matrix. A diagonal controller and a pre-filter, are then designed using a sequential multi-input multi-output (MIMO) QFT-based methodology to meet a set of performance specifications such as relative stability, disturbance rejection, robust tracking and so forth. The simulation results validate the effectiveness of the proposed control scheme. A comparative analysis with reported works shows that the proposed control scheme outperforms some of the reported control strategies.


2015 ◽  
Vol 73 (3) ◽  
Author(s):  
Mohamad Saiful Islam Aziz ◽  
Sophan Wahyudi Nawawi ◽  
Shahdan Sudin ◽  
Norhaliza Abdul Wahab ◽  
Mahdi Faramarzi ◽  
...  

This paper presents a new approach of optimization technique in the controller parameter tuning for waste-water treatment process (WWTP) application. In the case study of WWTP, PID controller is used to control substrate (S) and dissolved oxygen (DO) concentration level. Too many parameters that need to be controlled make the system becomes complicated. Gravitational Search Algorithm (GSA) is used as the main method for PID controller tuning process. GSA is based on Newton's Law of Gravity and mass interaction. In this algorithm, the searcher agents survey the masses that interact with each other using law of gravity and law of motion. For WWTP system, the activated sludge reactor is used and this system is multi-input multi-output (MIMO) process. MATLAB is used as the platform to perform the simulation, where this optimization is compared to other established optimization method such as the Particle Swarm Optimization (PSO) to determine whether GSA has better features compared to PSO or vice-versa. Based on this case-study, the results show that transient response of GSA-PID was 20%-30% better compared to transient response of the PSO-PID controller.


Sign in / Sign up

Export Citation Format

Share Document