Dynamic Model Simulation and Verification of a Two-Stage High-Rate Anaerobic Treatment Process with Recycle

1993 ◽  
Vol 28 (11-12) ◽  
pp. 197-207 ◽  
Author(s):  
J. Keller ◽  
M. Romli ◽  
P. L. Lee ◽  
P. F. Greenfield

The effect of overload on a two-phase high rate anaerobic wastewater treatment system with recycle was determined experimentally and simulated dynamically using a structured model. The experimental system consisted of a well mixed continuous reactor, controlled at pH 6 by sodium hydroxide addition, as the acidification stage and a fluidized bed reactor for the methanogenic stage, with an additional recycle connection from the second to the first reactor. Step changes in the feed concentration as well as in the feed flow rate were investigated and compared to simulation predictions. Operation without recycle was modelled accurately, with the simulation data of most process variables matching the experimental results quantitatively. The application of the same model to recycle operation showed significant discrepancy between the experimental and simulated data for the sodium hydroxide consumption rate and the gas flow rate in the acidification reactor. Although the actual values were different, the qualitative responses of the experimental and simulated step changes were similar. Other simulated variables showed good agreement with the experimental measurements. The model provides a useful tool for design and control studies in systems without recycle and, with some modification, for operation with recycle.

1994 ◽  
Vol 29 (9) ◽  
pp. 213-223 ◽  
Author(s):  
Sandra K. Kaiser ◽  
Richard R. Dague

The “temperature-phased anaerobic biofilter” or TPAB process (U.S. Patent pending), is a new high-rate anaerobic treatment system that includes a thermophilic (56°C) biofilter connected in series with a mesophilic (35°C) biofilter providing for two-temperature, two-phase treatment. Three TPAB systems of different thermophilic:mesophilic reactor size ratios were operated at system HRTs of 24 hrs, 36 hrs, and 48 hrs to characterize performance and to determine if an optimum size ratio exists between the thermophilic and mesophilic phases. The three TPAB systems achieved SCOD reductions in excess of 97% and TCOD reductions in excess of 90% for a synthetic milk substrate over a range of system COD loadings from 2 g COD/L/day to 16 g COD/L/day. There was little difference in performance between the three TPAB systems based on COD reduction and methane production. The 1:7 ratio of thermophilic:mesophilic phase TPAB system performed as well as the 1:3 and 1:1 size ratio TPAB systems. In applications of the process, a relatively small thermophilic first-phase can be used without sacrificing overall two-phase system performance. The TPAB process is a promising new anaerobic treatment technology with the ability to achieve higher efficiencies of organic removals than is generally possible for single-stage anaerobic filter systems operated at equivalent HRTs and organic loadings.


2021 ◽  
Author(s):  
Ekhwaiter Abobaker ◽  
Abadelhalim Elsanoose ◽  
Mohammad Azizur Rahman ◽  
Faisal Khan ◽  
Amer Aborig ◽  
...  

Abstract Perforation is the final stage in well completion that helps to connect reservoir formations to wellbores during hydrocarbon production. The drilling perforation technique maximizes the reservoir productivity index by minimizing damage. This can be best accomplished by attaining a better understanding of fluid flows that occur in the near-wellbore region during oil and gas operations. The present work aims to enhance oil recovery by modelling a two-phase flow through the near-wellbore region, thereby expanding industry knowledge about well performance. An experimental procedure was conducted to investigate the behavior of two-phase flow through a cylindrical perforation tunnel. Statistical analysis was coupled with numerical simulation to expand the investigation of fluid flow in the near-wellbore region that cannot be obtained experimentally. The statistical analysis investigated the effect of several parameters, including the liquid and gas flow rate, liquid viscosity, permeability, and porosity, on the injection build-up pressure and the time needed to reach a steady-state flow condition. Design-Expert® Design of Experiments (DoE) software was used to determine the numerical simulation runs using the ANOVA analysis with a Box-Behnken Design (BBD) model and ANSYS-FLUENT was used to analyses the numerical simulation of the porous media tunnel by applying the volume of fluid method (VOF). The experimental data were validated to the numerical results, and the comparison of results was in good agreement. The numerical and statistical analysis demonstrated each investigated parameter’s effect. The permeability, flow rate, and viscosity of the liquid significantly affect the injection pressure build-up profile, and porosity and gas flow rate substantially affect the time required to attain steady-state conditions. In addition, two correlations obtained from the statistical analysis can be used to predict the injection build-up pressure and the required time to reach steady state for different scenarios. This work will contribute to the clarification and understanding of the behavior of multiphase flow in the near-wellbore region.


2011 ◽  
Vol 383-390 ◽  
pp. 4922-4927
Author(s):  
Peng Xia Xu ◽  
Yan Feng Geng

Wet gas flow is a typical two-phase flow with low liquid fractions. As differential pressure signal contains rich information of flow parameters in two-phase flow metering, a new method is proposed for wet gas flow metering based on differential pressure (DP) and blind source separation (BSS) techniques. DP signals are from a couple of slotted orifices and the BSS method is based on time-frequency analysis. A good relationship between the liquid flow rate and the characteristic quantity of the separated signal is established, and a differential pressure correlation for slotted orifice is applied to calculate the gas flow rate. The calculation results are good with 90% relative errors less than ±10%. The results also show that BSS is an effective method to extract liquid flow rate from DP signals of wet gas flow, and to analysis different interactions among the total DP readings.


Author(s):  
Hao Feng ◽  
Xun Zhu ◽  
Rong Chen ◽  
Qiang Liao

In this study, visualization study on the gas-liquid two phase flow characteristics in a gas-liquid-solid microchannel reactor was carried out. Palladium nanocatalyst was coated onto the polydopamine functionalized surface of the microchannel through eletroless deposition. The materials characterization results indicated that palladium nanocatalyst were well dispersed on the modified surface. The effects of both the gas and liquid flow rates as well as inlet nitrobenzene concentration on the two-phase flow characteristics were studied. The experimental results revealed that owing to the chemical reaction inside the microreactor, the gas slug length gradually decreased along the flow direction. For a given inlet nitrobenzene concentration, increasing the liquid flow rate or decreasing the gas flow rate would make the variation of the gas slug length more obvious. High inlet nitrobenzene concentration would intensify both the nitrobenzene transfer efficiency and gas reactants consumption, and thereby the flow pattern in the microchannel was transferred from Taylor flow into bubble flow. Besides, the effect of both flow rate and original nitrobenzene concentration on the variation of nitrobenzene conversion and the desired product aniline yield were also discussed.


2013 ◽  
Vol 726-731 ◽  
pp. 2169-2172
Author(s):  
Bo Jiang ◽  
Jing Tang Zheng

An airtight gas electrical plasma reactor was designed with subsequent reaction column to estimate performance of this treatment operating in continuous mode for the remediation of wastewater contaminated by organic dye. It was found that subsequent reaction column contributed great for final dye removal because generated ozone was sufficiently utilized in this system and decolorization behaviors in continuous processes were fitted well with first-order kinetic model.And operating under the conditions of input voltage 45kV, gas flow rate 40 L/h, virgin liquid conductivity and unmodified initial pH, the decolorization efficiencies were, at liquid flow rate of 1.5 L/h, 99.7% for 10 mg/L, 99.5% for 20 mg/L, 97.3% for 30 mg/L and 96.7% for 40 mg/L.


2014 ◽  
Vol 47 (6) ◽  
pp. 478-482 ◽  
Author(s):  
Satoshi Nishida ◽  
Hiroshi Muta ◽  
Shizuma Kuribayashi
Keyword(s):  
Gas Flow ◽  

Author(s):  
Enrico Munari ◽  
Michele Pinelli

Nowadays, wet gas flow rate measurement is still a challenge for experimental investigators and it is becoming an even more important issue to overcome in the turbomachinery sector as well, due to the increasing trend of wet compression applications in industry. The requirement to determine gas turbine performance when processing a wet gas leads to the need to understand certain phenomena, such as type of liquid flow re-distribution, and errors introduced when the mass flow rate measurement of a two-phase gas is attempted. Unfortunately, this measurement is often affected by the presence of liquid. Literature does not offer a unique definition of the term wet gas, although it is recognized that a wet gas can generally be defined as a two-phase gas in which the liquid percentage is lower than the gas one. This paper aims to collect and describe the main works present in literature in order to clarify i) the most used parameters that describe the types of wet gas, and ii) the types of errors and flow patterns which occur in different types of applications, in terms of pressure, percentage of liquid, Reynolds number, etc. Therefore, this literature review offers a comprehensive description of the possible effects of liquid presence in a wet gas and, and an in-depth analysis of the limitations and beneficial effects of current single-phase flow rate sensors in order to identify the best solutions, and empirical corrections available in literature to overcome this challenge.


Author(s):  
Rinaldo Antonio de Melo Vieira ◽  
Mauricio Gargaglione Prado

The effect of free gas on the Electrical Submersible Pump (ESP) performance is well known. At a constant rotational speed and constant liquid flowrate, small amount of gas causes a mild head reduction when compared to the single phase liquid head. However, at higher gas rates, a drastic reduction in the head is observed. This critical condition, known as surging point, is a combination of liquid and gas flow rates that cause a maximum in the head performance curve. The first derivative of the head with respect to the liquid flow rate change sign as the liquid flow rate crosses the surging point. In several works on ESP two-phase flow performance, production conditions to the left of the surging region are described or reported as unstable operational conditions. This paper reviews basic concepts on stability of dynamical systems and shows through simulation that ESP oscillatory behavior may result from two-phase flow conditions. A specific drift flux computation code was developed to simulate the dynamic behavior of ESP wells producing without packer.


Sign in / Sign up

Export Citation Format

Share Document