Adsorption of heavy metals from water using banana and orange peels

2003 ◽  
Vol 47 (1) ◽  
pp. 185-190 ◽  
Author(s):  
G. Annadurai ◽  
R.S. Juang ◽  
D.J. Lee

Liquid-phase adsorption removal of Cu2+, Co2+, Ni2+, Zn2+, and Pb2+ in the concentration range of 5-25 mg/L using low-cost banana and orange peel wastes was examined at 30 oC. Under comparable conditions, the amount of adsorption decreased in the order Pb2+ > Ni2+ > Zn2+ > Cu2+ > Co2+ for both adsorbents. The adsorption isotherms could be better described by the Freundlich equation. The amount of adsorption increased with increasing pH and reached a plateau at pH > 7, which was confirmed by the variations of zeta potentials. The application potential of such cellulose-based wastes for metal removal (up to 7.97 mg Pb2+ per gram of banana peel at pH 5.5) at trace levels appeared to be promising.

2015 ◽  
Vol 72 (4) ◽  
Author(s):  
Mohd Ismid Mohd Said ◽  
Shaikhah Sabri ◽  
Shamila Azman

Contamination of metals in aquatic environment is a worldwide problem because of its toxicity and capability to accumulate in biological chain, as well as persistence in the natural environment. Therefore various expensive technologies have been applied to treat metal-polluted water. In Malaysia there are abundance of banana species available which could provide cheap, low cost and environmental friendly bio-materials. Preliminary study was conducted on two species of banana i.e. Musa balbisiana (Nipah) and Musa acuminata (Kapas). The banana peels were washed, dried and grounded into various range of particle sizes (0.20–1.18 mm). The ability of the adsorbents were determined by agitation of 1.0 g banana peel and 100 ml of cadmium standard solution at the concentration of 100 mg/L. Musa balbisiana showed the highest removal of cadmium at 89.58% from the initial concentration compared to Musa acuminate with the particle size of 0.30-0.60 mm. Adsorption equilibrium data are well described by Langmuir isotherm model. The result also shows that different species have different capabilities to adsorb metal. Hence, their potential as bio-adsorbent could be further be examined for metal removal from wastewater.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3946
Author(s):  
Mihai Negroiu ◽  
Anca Andreea Țurcanu ◽  
Ecaterina Matei ◽  
Maria Râpă ◽  
Cristina Ileana Covaliu ◽  
...  

Due to its valuable compounds, food waste has been gaining attention in different applications, such as life quality and environment. Combined with circular economy requirements, a valorization method for waste, especially banana waste, was to convert them into adsorbents with advanced properties. The banana waste, after thermal treatment, was used with high removal performances (100%) for the removal of heavy metals, such as Cr, Cu, Pb, and Zn, but their small particle size makes them very hard to recover and reuse. For this reason, a biopolymeric matrix was used to incorporate the banana waste. The matrix was chosen for its remarkable properties, such as low cost, biodegradability, low carbon footprint, and reduced environmental impact. In this research, different types of materials (simple banana peel ash BPA and combined with biopolymeric matrix, ALG–BPA, CS–BPA) were prepared, characterized, and tested. The materials were characterized by means of attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), optical microscopy (OM), scanning electron microscopy (SEM), and tested for the removal of metal ions from synthetic solutions using atomic absorption spectroscopy (AAS). The ALG–BPA material proved to be the most efficient in the removal of heavy metal ions from synthetic solution, reaching even 100% metal removal for Cr, Fe, Pb, and Zn, while the CS-based materials were the least efficient, presenting the best values for Cr and Fe ions with a removal efficiency of 34.14% and 28.38%, respectively. By adding BPA to CS, the adsorption properties of the material were slightly improved, but also only for Cr and Fe ions, to 37.09% and 57.78%.


2013 ◽  
Vol 773 ◽  
pp. 889-892 ◽  
Author(s):  
Yuan Peng ◽  
Hong Yan Xiao ◽  
Xian Zhong Cheng ◽  
Hong Mei Chen

The use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the currentexpensive methods of removing arsenic from wastewater. Orange peel was collected from the local fields of orangetrees and converted into a low-cost adsorbent. The effects of solution pH, contact time, and concentration of orange peel have beenstudied. The maximum adsorption capacity calculated from the Langmuirisotherm model was 43.69 mg g-1,Based on the adsorption capacity, the pretreating orange peel was shown to be promising materials for adsorption removal ofarsenics from aqueous solutions.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3985
Author(s):  
Nan Wan ◽  
Yu Jiang ◽  
Jiamei Huang ◽  
Rania Oueslati ◽  
Shigetoshi Eda ◽  
...  

A sensitive and efficient method for microRNAs (miRNAs) detection is strongly desired by clinicians and, in recent years, the search for such a method has drawn much attention. There has been significant interest in using miRNA as biomarkers for multiple diseases and conditions in clinical diagnostics. Presently, most miRNA detection methods suffer from drawbacks, e.g., low sensitivity, long assay time, expensive equipment, trained personnel, or unsuitability for point-of-care. New methodologies are needed to overcome these limitations to allow rapid, sensitive, low-cost, easy-to-use, and portable methods for miRNA detection at the point of care. In this work, to overcome these shortcomings, we integrated capacitive sensing and alternating current electrokinetic effects to detect specific miRNA-16b molecules, as a model, with the limit of detection reaching 1.0 femto molar (fM) levels. The specificity of the sensor was verified by testing miRNA-25, which has the same length as miRNA-16b. The sensor we developed demonstrated significant improvements in sensitivity, response time and cost over other miRNA detection methods, and has application potential at point-of-care.


2021 ◽  
Vol 13 (14) ◽  
pp. 7945
Author(s):  
Matteo Vitale ◽  
María del Mar Barbero-Barrera ◽  
Santi Maria Cascone

More than 124 million tons of oranges are consumed in the world annually. Transformation of orange fruit generates a huge quantity of waste, largely composed of peels. Some attempts to reuse by-products derived from citrus waste have been proposed for energy production, nutrient source or pharmaceutical, food and cosmetic industries. However, their use in the building sector had not been researched. In this study, orange peels, in five different ratios, from 100% of wet peels to 75% and from 0% of dry peels to 25%, were submitted to a thermo-compression procedure. They were evaluated according to their physical (bulk density, water absorption, thickness swelling, surface soundness and thermal conductivity) and mechanical properties (bending strength and modulus of elasticity). The results showed that orange peels can be used as thermal insulation material. The addition of dried peels makes the structure of the board heterogeneous and thus increases its porosity and causes the loss of strength. Hence, the board with the sole use of wet peel, whose thermal conductivity is 0.065 W/mK while flexural strength is 0.09 MPa, is recommended.


Author(s):  
Bingbing Qiu ◽  
Xuedong Tao ◽  
Hao Wang ◽  
Wenke Li ◽  
Xiang Ding ◽  
...  

2014 ◽  
Vol 625 ◽  
pp. 889-892 ◽  
Author(s):  
Safoura Daneshfozoun ◽  
Bawadi Abdullah ◽  
Mohd Azmuddin Abdullah

This study developed an effective and economical physical pretreatment of OPEFB to be used as biosorbent for the removal of heavy metal ions such as Cu+2, Zn+2and Pb2+. The effects of fibres sizes, metal ions concentration (100-1000 ppm), initial pH (4-10) and contact time (20-150 min) were investigated in batch system. Samples were characterized with Atomic Absorption Spectrometry (AAS), Transmission Electron Microscopy (TEM) and Fourier Transmission Infra-red Spectroscopy (FTIR). Results showed pH-dependence adsorption efficiency and increased adsorption with initial metal concentrations where more than 92% adsorption efficiency achieved. We have successfully developed an eco-friendly, low cost adsorbent without any chemical modification or excessive energy disposal.


10.6036/10212 ◽  
2021 ◽  
Vol DYNA-ACELERADO (0) ◽  
pp. [ 7 pp]-[ 7 pp]
Author(s):  
Julieta Domínguez Soberanes ◽  
PIA BERGER

This study uses orange peel waste to create a biopolymer that can be used for different purposes. In order to achieve this, we evaluated various technologies for the production of the biopolymer, and tried to design the most environmentally friendly process possible. One of the reasons why this bioplastic should be manufactured is to participate in the replacement of common environmental hazardous plastic, which has been banned in many places. On the other hand, using orange peel as the main ingredient is an alternative and gives value to an organic waste that has limited use in circular economy solutions. In this research we present a methodology to create a bioplastic of orange peels. As a result, we obtained a biodegradable, flexible and resistant material to be used in the manufacture of containers, utensils, etc. In addition, it is a material that, given the raw materials used, is considered GRAS (Generally Recognized As Save), implying a non-toxic product that is safe for the consumer.


2020 ◽  
Vol 32 (5) ◽  
pp. 1121-1127
Author(s):  
Mahesh Kumar Gupta ◽  
P.K. Tandon ◽  
Neelam Shukla ◽  
Harendra Singh ◽  
Shalini Srivastava

Acid activated carbon obtained from cheap, non-toxic and locally available banana peel was used as a low cost and efficient adsorbent for the removal of dyes methyl orange and rhodamine-B from the aqueous solution. Changes in the resulting material before and after activation and after treatment were studied by different techniques, such as SEM-EDX, XRD, FTIR measurements. Effects of duration of treatment, amount of banana peel activated carbon, pH, and initial methyl orange and rhodamine-B concentration, on the removal of dye were studied to get optimum conditions for maximum dye removal. Removal efficiency of the activated ash remains almost constant in a wide range of pH from 2.5 to 5.6. In 75 min at room temperature removal of 98.5 % methyl orange (anionic) and 99.0 % rhodamine-B (cationic) dyes with 0.1 g and 0.125 g, respectively was obtained from the contaminated water having 10 ppm dye concentration.


Sign in / Sign up

Export Citation Format

Share Document