Ozonation by-products issued from the destruction of microorganisms present in wastewaters treated for reuse

2004 ◽  
Vol 50 (2) ◽  
pp. 187-193 ◽  
Author(s):  
M.N. Rojas-Valencia ◽  
M.T. Orta-de-Velásquez ◽  
M. Vaca-Mier ◽  
V. Franco

This work demonstrates the reaction of ozone on the amino acids comprising the covering layer of resistant micro-organisms. A secondary aim was to check the byproducts generated when ozone was applied to synthetic samples (such as Vibrio cholerae NO 01 WFCC-449, Salmonella typhi ATTC-6539, faecal coliforms and Ascaris suum). The ozone was applied at a concentration of 18.4 mgO3/min at pH 3, for different lengths of time. In the case of bacteria, results showed that, at 8 minutes, the number was reduced to the level of the Official Mexican Standards set for treated water destined for irrigation purposes (1,000 MPN/100 mL). Excellent correlation coefficients (0.95 to 0.99) were obtained for microbial concentrations versus ozone contact time. Destruction times required for 100% removal of the initial bacteria population varied between 2 and 14 minutes, while Ascaris suum required 1 hour. When Gram-negative bacteria die due to the effects of ozone, cellular lysis and the liberation of endotoxins (biodegradable) were observed. The ozonation of amino acids in the shell of Ascaris suum eggs, leads to the formation of aldehydes, such as formaldehyde and acetaldehyde, in low concentrations (0.0003 and 0.0005 μg/mL respectively). These levels are not hazardous to human health.

1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


1988 ◽  
Vol 20 (11-12) ◽  
pp. 117-123 ◽  
Author(s):  
D. van der Kooij ◽  
W. A. M. Hijnen

A K.pneumoniae strain, isolated from a water treatment system, was tested in growth measurements for its ability to multiply at substrate concentrations of a few micrograms per liter. The organism multiplied on mixtures of carbohydrates and amino acids at a substrate concentration of 1 µg of C of each compound per liter. Tests with individual compounds revealed that especially carbohydrates were utilized at low concentrations. The Ks values obtained for maltose and maltopentaose were 53 µg of C/l and 114 µg of C per liter, respectively. The significance of the growth of K.pneumoniae at low substrate concentrations is discussed.


1953 ◽  
Vol 51 (2) ◽  
pp. 185-194 ◽  
Author(s):  
L. A. Allen ◽  
J. Grindley ◽  
Eileen Brooks

Chemical and bacteriological examination of muds from sources differing widely in the degree of pollution to which they were subject showed great differences in the contents of carbon, nitrogen and sulphide. These differences were not correlated with differences in the severity of faecal pollution. The amount of organic matter available for growth of micro-organisms in the mud of different depths was not reflected in the figures for organic carbon. A convenient index of this factor was obtained by measuring the volume of gas evolved during anaerobic digestion over a prolonged period of incubation. The rate of evolution was increased by the addition of an inoculum of digested sludge from a sewage works.Sulphate-reducing bacteria appeared to be of two different types. In samples of mud from fresh-water lakes much higher counts were usually obtained in a medium containing comparatively low concentrations of inorganic salts and of lactate than in a medium containing much higher concentrations of these constituents. In samples from locations where conditions were more saline the reverse was usually true.Counts of Bact. coli and of Strep, faecalis together probably constitute the best index of faecal pollution in the examination of samples of mud. These organisms are, however, largely confined to the surface layers.


1975 ◽  
Vol 19 (1) ◽  
pp. 203-213
Author(s):  
W.B. Amos ◽  
L.M. Routledge ◽  
F.F. Yew

The proteins of the contractile spasmoneme of Zoothamnium have been examined for comparison with other motile systems. Though capable of calcium-induced contraction, glycerinated preparations of the spasmoneme contain neither actin nor tubulin at levels that can be detected in polyacrylamide gels. Sixty per cent of the protein in sodium dodecyl sulphate gels migrates in a band at a molecular weight of approximately 20,000, consisting largely of 2 similar protein species which are here given the name of spasmins. The amino acid composition of 2 spasmin fractions has been determined by a fluorimetric method. They are rich in Asx, Glx and serine, but have few aromatic amino acids and no cystine or methionine. In calcium-buffered polyacrylamide gels, it was observed that a reduction in the electrophoretic mobility of the spasmins was induced specifically by calcium (but not magnesium) at the same low concentrations as induce contraction. This indicates that the spasmins are calcium-binding proteins which may be involved directly in the calcium-induced contraction of the spasmoneme.


2021 ◽  
Vol 7 (11) ◽  
pp. 11-21

Abstract. Research relevance: low molecular weight supramolecular hydrogels are unique objects that can solve many pressing problems in medicine, food industry and other sectors of the national economy. Research objectives: in recent past, it was discovered that low-concentration solutions of L-cysteine and silver nitrate (CSN) can form, when electrolyte solutions are added to hydrogels. We were faced with the task of obtaining hydrogels from dilute solutions of glycyram (GC) by adding CSN, since GC, due to its poor solubility, has low bioavailability. Materials and research methods: using the method of isomolar series, a comparative study of the formation of hydrogels by dilute GC solutions with the addition of CSN and GCP was carried out. It has been found that most durable hydrogels were obtained using CSN. Thus, GC hydrogels were obtained at a concentration of 10−3 M after adding CSN and GCP, which have a supramolecular character and combine the properties of GC, amino acids, and silver ions. Research results: glycyram hydrogels were obtained at its concentration equal to 10−3 M by mixing it with silver amino acids L-cysteine (CSN) and L-glutamic acid (GCP) solutions in same low concentrations. Conclusions: hydrogels with glycyram form silver solutions of those amino acids that are capable of giving frame structures at a ratio of amino acid: silver nitrate of 1.25.


Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 491
Author(s):  
Jesus Valcarcel ◽  
Javier Fraguas ◽  
Carolina Hermida-Merino ◽  
Daniel Hermida-Merino ◽  
Manuel M. Piñeiro ◽  
...  

Rising trends in fish filleting are increasing the amount of processing by-products, such as skins of turbot, a flatfish of high commercial value. In line with circular economy principles, we propose the valorization of turbot skins through a two-step process: initial gelatin extraction described for the first time in turbot, followed by hydrolysis of the remaining solids to produce collagen hydrolysates. We assayed several methods for gelatin extraction, finding differences in gelatin properties depending on chemical treatment and temperature. Of all methods, the application of NaOH, sulfuric, and citric acids at 22 °C results in the highest gel strength (177 g), storage and loss moduli, and gel stability. We found no relation between mechanical properties and content of pyrrolidine amino acids, but the best performing gelatin displays higher structural integrity, with less than 30% of the material below 100 kDa. Collagen hydrolysis was more efficient with papain than alcalase, leading to a greater reduction in Mw of the hydrolysates, which contain a higher proportion of essential amino acids than gelatin and show high in vitro anti-hypertensive activity. These results highlight the suitability of turbot skin by-products as a source of gelatin and the potential of collagen hydrolysates as a functional food and feed ingredient.


Author(s):  
Ahmed Abdullah Bakhashwain Ahmed Abdullah Bakhashwain

This study was carried out in the Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University to evaluate 7 flax genotypes from different geographical regions concerning their composition from oil and protein contents, fatty acids and amino acids, besides, calculate the correlation coefficients between the fatty acids and also between the amino acids.The main results showed that Verum cv. had the highest oil content and linolenic acid (Omega-3) while Hiera cv. was the highest in meal protein content and most amino acids. The highest amino acid concentration was proline and it ranged from 27.15% to 30.21%. Linolenic acid (Omega-3) negatively and significantly correlated with Oleic and Linoleic (Omega-6) fatty acids. Lysine amino acid positively and significantly correlated with the amino acids of Glutamine, Aspartic, Leucine, Serine and Isoleucine.


1971 ◽  
Vol 178 (1050) ◽  
pp. 111-129 ◽  

When symbiotic coelenterates, especially hermatypic corals, were incubated in the light in sea water containing NaH 14 CO 3 , small quantities of fixed 14 C were released from the tissues at a steady rate over 4 h. The rate of release was greatly increased in the presence of glycerol, glucose and alanine; the additional 14 C released was in the same substance as that added to the medium. The following related compounds had little or no effect on 14 C release : ethylene glycol, sorbose, fructose, glucosamine, glycine, proline, serine and glutamic acid. Such results have been previously reported in other symbiotic systems, and the substances causing the specific release of fixed 14 C are believed to be those which move from the autotrophic to the heterotrophic symbiont. This belief is supported here by previous observations that glycerol, glucose and alanine are among the most important organic substances released by freshly isolated zooxanthellae. Ammonium chloride increased the amount of fixed 14 C released by corals into alanine media, possibly due to conversion of ammonia to amino acids by zooxanthellae. Appreciable release of 14 C fixed in the dark also occurred into alanine solutions. These results suggest possible roles of zooxanthellae in supplying organic nitrogen compounds to the host cell at night as well as during the day. The involvement of zooxanthellae in ‘recycling’ nitrogen compounds within the association may help to explain the success of corals in seas poor in nutrients. There was substantial utilization of external glycerol and glucose when supplied at either high or low concentrations. Corals may well be able to utilize some of the small amounts of organic matter dissolved in sea water in the natural environment.


Fisheries ◽  
2021 ◽  
Vol 2021 (4) ◽  
pp. 81-88
Author(s):  
Olga Mezenova ◽  
Dmitriy Pyanov ◽  
Svetlana Agafonova ◽  
Natalia Mezenova ◽  
V. Volkov

The perspective of the production of domestic compound feed for the development of industrial aquaculture in Russia is shown. Alternative sources of protein in mixed fodder for salmon and sturgeon have been investigated. The advantages of using protein hydrolysates instead of a part of fishmeal in compound feed are described. The advantages of protein hydrolysates from fish by-products are considered, the chemical composition and molecular fractional composition of sublimated protein hydrolysates obtained by enzymatic and thermal pathways from sardinella scales and ridges are studied. The presence in hydrolysates of 53.3 - 97.7% of low molecular weight peptides with a molecular weight of less than 10 kDa with a total protein content of 80.8-94.1% was established. Indicators of amino acid balance (scor) of hydrolyzates of scales and ridges of sardinella were calculated in relation to the established requirements for amino acids in salmonids. Indicators of amino acid balance (scor) of hydrolyzates of scales and ridges of sardinella were calculated in relation to the established requirements for amino acids in salmonids.It was found that the introduction of an enzymatically obtained hydrolyzate is more favorable for an increase in the content of limiting amino acids in mixed feed, and the use of sardinella scales for hydrolysis is more preferable than its ridges.


Author(s):  
Frank E. Scully, Jr ◽  
Barbara Conyers

Over the past 20 years, gas chromatography/mass spectroscopy (GC/MS) has been widely used to identify trace organic environmental contaminants and to study the mechanisms of the formation or transformation of organic compounds either by natural or man-made processes. In the area of water and wastewater disinfection, GC/MS has been highly successful in identifying numerous volatile organic chlorination by-products, some of which may pose undesirable health risks to humans and aquatic organisms at concentrations found in some waters. However, despite a considerable amount of research in this area much of the chemistry continues to be poorly understood. Analysis of trace organics by GC/MS relies on the assumption that the compounds to be analyzed are (1) volatile and (2) thermally stable to GC temperatures as high as 300 °C. Because nuclear magnetic resonance spectroscopy (NMR) is a mild and nondestructive method of analysis, it can reveal reactions that occur in water that cannot be observed by GC/MS. Until recently the reactions of amino acids with two or more equivalents of aqueous chlorine were believed to produce aldehydes and nitriles according to equation (1). LeCloirec and Martin have reported that the formation of nitriles in such situations may come in part from the reaction of monochloramine with aldehydes (equation (2)). Because reaction (2) may affect the distribution of products in reaction (1), it was important to determine the relationship between these two reactions. This chapter will review the applications of NMR we have used in studies of the products formed upon chlorination of amino acids.


Sign in / Sign up

Export Citation Format

Share Document