Isolation, identification, and algicidal activity of aerobic denitrifying bacterium R11 and its effect on Microcystis aeruginosa

2016 ◽  
Vol 73 (11) ◽  
pp. 2600-2607 ◽  
Author(s):  
Jun-feng Su ◽  
Si-cheng Shao ◽  
Ting-lin Huang ◽  
Fang Ma ◽  
Kai Zhang ◽  
...  

Recently, algicidal bacteria have attracted attention as possible agents for the inhibition of algal water blooms. In this study, an aerobic denitrifying bacterium, R11, with high algicidal activity against the toxic Microcystis aeruginosa was isolated from lake sediments. Based on its physiological characteristics and 16S rRNA gene sequence, it was identified as Raoultella, indicating that the bacterium R11 has a good denitrifying ability at 30 °C and can reduce the concentration of nitrate-N completely within 36 h. Additionally, different algicidal characteristics against Microcystis aeruginosa were tested. The results showed that the initial bacterial cell density and algal cell densities strongly influence the removal rates of chlorophyll a. Algicidal activity increased with an increase in the bacterial cell density. With densities of bacterial culture at over 2.4 × 105 cell/mL, algicidal activity of up to 80% was obtained in 4 days. We have demonstrated that, with the low initial algal cell density (OD680 less than 0.220), the algicidal activity reached was higher than 90% after 6 days.

2021 ◽  
Vol 16 (1) ◽  
pp. 35-43
Author(s):  
Oliveira M.M. ◽  
Silva E.S. ◽  
Calazans S.H. ◽  
Fernandes F.C. ◽  
Baeta Neves M.H.C. ◽  
...  

Toxic cyanobacteria blooms have been reported in freshwater sources worldwide and may lead to aquatic biota toxin accumulation and trophic chain transfer, resulting in ecological and public health concerns. To assess cyanobacteria effects on microcystin uptake and accumulation and on phosphatase, acethylcholinesterase (AChE) and carboxylesterase (CarbE) enzymatic activities, an in vivo experiment was carried out employing the golden mussel Limnoperna fortunei. These mussels were exposed to a Microcystis aeruginosa NPLJ-4 strain (NPLJ-4) for 48 hours at different cell densities. Subsequently, algal cell counts were carried out and enzymatic activities were assayed. All three enzymes (Phosphatase, AChE and CarbE) were inhibited at the end of the exposure experiment. Mussels exposed to higher in vivo M. aeruginosa densities exhibited microcystin uptake and accumulation. In vitro assays were also carried out, exposing soluble L. fortunei enzyme fractions to M. aeruginosa extracts containing microcystin, and phosphatase inhibition was observed, whereas acetylcholinesterase and carboxylesterase were not inhibited. The results indicate that metabolites other than mycrocystin probably caused the observed in vivo esterase inhibitions, requiring further investigations.


1984 ◽  
Vol 56 (2) ◽  
pp. 343-347 ◽  
Author(s):  
D. Roser ◽  
D.B. Nedwell ◽  
A. Gordon

2020 ◽  
Vol 42 (6) ◽  
pp. 319-326
Author(s):  
Joo Eun Han ◽  
Wontae Lee

Objectives:This study evaluated the removal of <i>Microcystis</i> by coagulation in raw waters with three different cell densities.Methods:Raw waters were prepared at three different cell densities (target cell densities of 10,000, 100,000, and 1,000,000 cell/mL; actual cell densities of 9,950, 102,000, and 991,000 cell/mL) by adding <i>Microcystis</i> into surface water from Nakdong river. Jar-tests were conducted with PACL, alum, illite, and loess at dosages of 0-150 mg/L.Results and Discussion:Regardless of coagulant types, the removal rates of <i>Microcystis</i> increased as the coagulant dosages increased. PACl and alum exhibited higher removal rates than illite and loess; PACl was the best coagulant to remove <i>Microcystis</i>. Removal of chlorophyll-a was highest when PACl added at 20.4 mg/L, and no significant increase in removal rate was observed with higher dosages of PACl. However, removal rates of chlorophyll-a by illite and loess gradually increased as the dosages increased.Conclusions:With the coagulants tested in this study, removal rates of <i>Microcystis</i> increased as the coagulant dosages increased. Removal rates of <i>Microcystis</i> increased as the cell densities increased probably because <i>Microcystis</i> acted as particles which could enhance the coagulation efficiency.


2016 ◽  
Vol 229 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Erika Galgoczi ◽  
Florence Jeney ◽  
Annamaria Gazdag ◽  
Annamaria Erdei ◽  
Monika Katko ◽  
...  

During the course of Graves’ orbitopathy (GO), orbital fibroblasts are exposed to factors that lead to proliferation and extracellular matrix (ECM) overproduction. Increased levels of tissue plasminogen activator inhibitor type 1 (PAI-1 (SERPINE1)) might promote the accumulation of ECM components. PAI-1 expression is regulated by cell density and various cytokines and growth factors including transforming growth factorβ(TGF-β). We examined the effects of increasing cell densities and TGF-β on orbital fibroblasts obtained from GO patients and controls. Responses were evaluated by the measurement of proliferation, PAI-1 expression, and ECM production. There was an inverse correlation between cell density and the per cell production of PAI-1. GO orbital, normal orbital, and dermal fibroblasts behaved similarly in this respect. Proliferation rate also declined with increasing cell densities. Hyaluronan (HA) production was constant throughout the cell densities tested in all cell lines. In both GO and normal orbital fibroblasts, but not in dermal fibroblasts, TGF-β stimulated PAI-1 production in a cell density-dependent manner, reaching up to a five-fold increase above baseline. This has been accompanied by increased HA secretion and pericellular HA levels at high cell densities. Increasing cell density is a negative regulator of proliferation and PAI-1 secretion both in normal and GO orbital fibroblasts; these negative regulatory effects are partially reversed in the presence of TGF-β. Cell density-dependent regulation of PAI-1 expression in the orbit, together with the local cytokine environment, may have a regulatory role in the turnover of the orbital ECM and may contribute to the expansion of orbital soft tissue in GO.


2021 ◽  
Vol 52 (1) ◽  
pp. 119-130
Author(s):  
Xiao Jing-Lei ◽  
Zhang Yan-Xin ◽  
Jia Cheng-Guo ◽  
Zhang Ming-Zhe ◽  
Chen Wei ◽  
...  

Based on the bioassay-guided strategy, we isolated 6-six allelochemicals [cichoric acid (I), 1,3-dicaffeoylquinic acid (II), 4,5-dicaffeoylquinic acid (III), chlorogenic acid (IV), 1-hydroxy-2-phthoic acid (V), echinacoside (VI)] from the roots of Echinacea purpurea (L.) Moench. Their structures were identified by nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS) spectroscopic data. The bioassays studies included allelopathic and algicidal activities to test the effects of extracts and isolated fractions against the test weeds (Amaranthus viridis L., Portulaca oleracea L. and Microcystis aeruginosa Kutzing). At 100 µg/mL, compound (II) inhibited the shoot length and germination of A. viridis and P. oleracea weeds with the germination RI of -0.95±0.04 and -0.95±0.02, respectively. Furthermore, compound (III) showed the strongest inhibition of root length of P. oleracea L. We also found that compounds I-VI have algicidal activity. The compound (I) at low inoculum (5.0×102 cells mL-1) and high inoculum (1.0×104 cells mL-1), showed the highest algicidal activity of 78 % and 87.67 % 6 h after the treatment at 5 µg mL-1 respectively.


Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 234-243 ◽  
Author(s):  
Lindsey J. White ◽  
Bradford W. Ozanne ◽  
Pierre Graber ◽  
Jean-Pierre Aubry ◽  
Jean-Yves Bonnefoy ◽  
...  

Abstract Human CD23 is a 45-kD type II membrane glycoprotein, which functions as a low-affinity receptor for IgE and as a ligand for the CD21 and CD11b/CD11c differentiation antigens. CD23 is released from the surface of cells as soluble fragments, and a 25-kD species of soluble CD23 (sCD23) appears to act as a multifunctional cytokine. In this report, sCD23 is shown to sustain the growth of low cell density cultures of a human pre-B–acute lymphocytic leukemia cell line, SMS-SB: no other cytokine tested was able to induce this effect. Flow cytometric analysis indicates that sCD23 acts to prevent apoptosis of SMS-SB cells. SMS-SB cells cultured at low cell density possess low levels of bcl-2 protein. Addition of sCD23 to cells at low cell density maintained bcl-2 expression at levels equivalent to those observed in SMS-SB cells cultured at higher cell densities. No CD23 mRNA was found in SMS-SB cells, ruling out an autocrine function for CD23 in this cell line model. Although SMS-SB cells do not express the known receptors for CD23, namely CD21, CD11b-CD18, or CD11c-CD18, the cells specifically bind CD23-containing liposomes, but not glycophorin-containing liposomes. Binding of CD23-containing liposomes is inhibited by anti-CD23 but not by anti-CD21 or anti-CD11b/c monoclonal antibodies. The data show that sCD23 prevents apoptosis of the SMS-SB cell line by acting through a novel receptor.


1979 ◽  
Vol 34 (3-4) ◽  
pp. 279-283 ◽  
Author(s):  
Jürgen van der Bosch ◽  
Ilse Sommer ◽  
Heinz Maier ◽  
Willy Rahmig

Abstract Lowered extracellular [Ca2+] causes low growth rates and low stationary cell densities in 3T3 cell cultures as compared to physiological [Ca2+]. Under otherwise constant conditions the extra­ cellular [Ca2+] determines a stable stationary cell density, which can be readied by increase of net cell number or decrease of net cell number, depending on cell density at the time of [Ca2+] adjustment. SV40-3T3 cells do not show this [Ca2+] dependency. At 39 °C 3T3 and SV40-3T3 cell populations show an increased growth rate at low cell densities as compared to cell populations at 35 °C. Approaching the stationary density the growth rate of both cell sorts is reduced faster at 39 °C than at 35 °C, leading to lower stationary cell densities at 39 °C than at 35 °C. A temperature change from 39 °C to 35 °C or in the opposite direction can affect the stationary cell density of 3T3 cell populations only if applied before reduction of growth rate by density-dependent growth-inhibiting principles has taken place.


1999 ◽  
Vol 65 (11) ◽  
pp. 4734-4740 ◽  
Author(s):  
J. Kessi ◽  
M. Ramuz ◽  
E. Wehrli ◽  
M. Spycher ◽  
R. Bachofen

ABSTRACT The effect of selenite on growth kinetics, the ability of cultures to reduce selenite, and the mechanism of detoxification of selenium were investigated by using Rhodospirillum rubrum. Anoxic photosynthetic cultures were able to completely reduce as much as 1.5 mM selenite, whereas in aerobic cultures a 0.5 mM selenite concentration was only reduced to about 0.375 mM. The presence of selenite in the culture medium strongly affected cell division. In the presence of a selenite concentration of 1.5 mM cultures reached final cell densities that were only about 15% of the control final cell density. The cell density remained nearly constant during the stationary phase for all of the selenite concentrations tested, showing that the cells were not severely damaged by the presence of selenite or elemental selenium. Particles containing elemental selenium were observed in the cytoplasm, which led to an increase in the buoyant density of the cells. Interestingly, the change in the buoyant density was reversed after selenite reduction was complete; the buoyant density of the cells returned to the buoyant density of the control cells. This demonstrated that R. rubrum expels elemental selenium across the plasma membrane and the cell wall. Accordingly, electron-dense particles were more numerous in the cells during the reduction phase than after the reduction phase.


2019 ◽  
Vol 20 (20) ◽  
pp. 5061 ◽  
Author(s):  
Srikumar Krishnamoorthy ◽  
Behnam Noorani ◽  
Changxue Xu

Gelatin methacrylate (GelMA) has been gaining popularity in recent years as a photo-crosslinkable biomaterial widely used in a variety of bioprinting and tissue engineering applications. Several studies have established the effects of process-based and material-based parameters on the physical–mechanical properties and microstructure of GelMA hydrogels. However, the effect of encapsulated cells on the physical–mechanical properties and microstructure of GelMA hydrogels has not been fully understood. In this study, 3T3 fibroblasts were encapsulated at different cell densities within the GelMA hydrogels and incubated over 96 h. The effects of encapsulated cells were investigated in terms of mechanical properties (tensile modulus and strength), physical properties (swelling and degradation), and microstructure (pore size). Cell viability was also evaluated to confirm that most cells were alive during the incubation. It was found that with an increase in cell density, the mechanical properties decreased, while the degradation and the pore size increased.


Sign in / Sign up

Export Citation Format

Share Document