scholarly journals Removal of Pb2+ in Wastewater via Adsorption onto an Activated Carbon Produced from Winemaking Waste

Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 697 ◽  
Author(s):  
Francisco Alguacil ◽  
Lorena Alcaraz ◽  
Irene García-Díaz ◽  
Félix López

This work describes the adsorption of Pb2+ in aqueous solution onto an activated carbon (AC) produced from winemaking waste (cluster stalks). After characterizing the AC using Fourier transform infrared spectroscopy (FTIR) and micro-Raman spectroscopy, the influence of different physico-chemical factors (stirring rate, temperature, pH, adsorbent concentration, etc.) on its capacity to adsorb Pb2+ was examined. Kinetic and thermodynamic studies showed that the adsorption of the Pb2+ follows a pseudo-second-order kinetic model and fits the Langmuir isotherm model, respectively. The maximum adsorption capacity of the AC was 58 mg/g at 288 K temperature and pH of 4. In conclusion, ACs made from waste cluster stalks could be successfully used to remove Pb2+ from polluted water.

2020 ◽  
Vol 10 (9) ◽  
Author(s):  
G. B. Adebayo ◽  
H. I. Adegoke ◽  
Sidiq Fauzeeyat

Abstract Hexavalent chromium was adsorbed from aqueous solution with three prepared and characterized adsorbents, namely goethite (G), activated carbon (AC) and their composite (GAC). The goethite particle was synthesized using the precipitation methods, and activated carbon was prepared from the stem bark of Daniellia oliveri tree and composite in a ratio of 1:5 goethite–activated carbon. The adsorption capacities of G, AC and GAC for Cr(VI) are 6.627, 5.455 and 6.354 mg/g with 0.02 g adsorbent within contact time of 60, 180 and 30 min for G, AC and GAC, respectively, for Cr(VI) adsorption at optimum pH of 3. The isotherm studied was best explained by Langmuir adsorption isotherm and fitted with the pseudo-second-order kinetic model. Desorption studies showed that 1.0 M HNO3 was a better desorbing agent than 0.1 M HNO3, 0.1 M HCl and 1.0 M HCl. Chromium was most desorbed (94.60% in Cr//G using 1 M HNO3). The result obtained revealed that goethite and activated carbon produced are favourable adsorbents and the composite of the two adsorbents gives a more favourable, economical and affordable adsorbent for the clean-up of heavy metal contamination.


2009 ◽  
Vol 610-613 ◽  
pp. 65-68 ◽  
Author(s):  
Xue Gang Luo ◽  
Feng Liu ◽  
Xiao Yan Lin

Konjac glucomannan (KGM) was converted into water insoluble konjac glucomannan (WIKGM) by treating with NaOH through completely deacetylated reaction. Adsorption study was carried out for the adsorption of Pb2+ from aqueous solution using water insoluble konjac glucomannan. The influences of pH, contact time, temperature and initial Pb2+ concentration on the absorbent were studied. Results of kinetic data showed that the Pb2+ adsorption rate was fast and good correlation coefficients were obtained for the pseudo second-order kinetic model. The equilibrium process was described well by the Langmuir isotherm model with maximum adsorption capacity of 9.18 mg/g on WIKGM at 25°C.


2014 ◽  
Vol 1043 ◽  
pp. 219-223 ◽  
Author(s):  
Noor Shawal Nasri ◽  
Jibril Mohammed ◽  
Muhammad Abbas Ahmad Zaini ◽  
Usman Dadum Hamza ◽  
Husna Mohd. Zain ◽  
...  

Concern about environmental protection has increased over the years and the presence of volatile organic compounds (VOCs) in water poses a threat to the environment. In this study, coconut shell activated carbon (PHAC) was produced by potassium hydroxide activation via microwave for benzene and toluene removal. Equilibrium data were fitted to Langmuir, Freundlich and Tempkin isotherms with all the models having R2 > 0.94. The equilibrium data were best fitted by Langmuir isotherm, with maximum adsorption capacity of 212 and 238mg/g for benzene and toluene, respectively. The equilibrium parameter (RL) falls between 0 and 1 confirming the favourability of the Langmuir model. Pseudo-second-order kinetic model best fitted the kinetic data. The PHAC produced can be used to remediate water polluted by VOCs.


2017 ◽  
Vol 76 (6) ◽  
pp. 1565-1573 ◽  
Author(s):  
Jun Liu ◽  
Siying Xia ◽  
Xiaomeng Lü ◽  
Hongxiang Shen

Phosphorus flame retardant tricresyl phosphate (TCP) adsorption on graphene nanomaterials from aqueous solutions was explored using batch and column modes. Comparative studies were performed regarding the kinetics and equilibrium of TCP adsorption on graphene oxide (GO) and graphene (G) in batch mode. The adsorption kinetics exhibited a rapid TCP uptake, and experimental data were well described by the pseudo-second-order kinetic model. Adsorption isotherm data of TCP on the two adsorbents displayed an improved TCP removal performance with increasing temperature at pH 5, while experimental data were well described by the Langmuir isotherm model with a maximum adsorption capacity of 87.7 mg·g−1 for G, and 30.7 mg·g−1 for GO) at 303 K. The thermodynamic parameters show that the adsorption reaction is a spontaneous and endothermic process. In addition, dynamic adsorption of TCP in a fixed G column confirmed a faster approach to breakthrough at high flow rate, high influent TCP concentration, and low filling height of adsorbent. Breakthrough data were successfully described by the Thomas and Yoon-Nelson models.


2015 ◽  
Vol 737 ◽  
pp. 537-540
Author(s):  
Yan Wei Guo ◽  
Hua Zhang ◽  
Zhi Liang Zhu

A novel Mg/Fe/Ce layered double hydroxide (LDHs) and its calcined product (CLDH) were synthesized and CLDH was used as adsorbents for the removal of chlorate ions. Results showed that the initial solution pH was an important factor influencing the chlorate adsorption. The adsorption behavior of chlorate followed the Langmuir adsorption isotherm with a maximum adsorption capacity of 18.2 mg/g. The adsorption kinetics of chlorate on CLDH can be described by the pseudo-second-order kinetic model. It was concluded that the CLDH material is a potential adsorbent for the purification of polluted water with chlorate.


Author(s):  
Ayben Polat ◽  
Sukru Aslan

The sorption of Cu2+ ions from aqueous solutions by eggshell was investigated in a batch experimental system with respect to the temperature, initial Cu2+ concentrations, pH, and biosorbent doses. The adsorption equilibrium was well described by the Langmuir isotherm model with the maximum adsorption capacity of 5.05 mg Cu2+/g eggshell at 25 °C. The value of qe increased with increasing the temperature while also increases the release of Ca2+ and HCO−3 ions from the eggshell. The highest sorption of Cu onto the waste eggshell was determined at the initial pH value of 4.0. The results confirming that the adsorption reaction of Cu2+ on the eggshell was thought to be endothermic. A comparison of the kinetic models such as pseudo first and second-order kinetics, intraparticle diffusion, and Elovich on the sorption rate demonstrated that the system was best described by the pseudo second-order kinetic model.


2009 ◽  
Vol 27 (4) ◽  
pp. 435-445 ◽  
Author(s):  
Laura Bulgariu ◽  
Dumitru Bulgariu ◽  
Theodor Malutan ◽  
Matei Macoveanu

The adsorption of lead(II) ions from aqueous solution onto lignin was investigated in this study. Thus, the influence of the initial solution pH, the lignin dosage, the initial Pb(II) ion concentration and the contact time were investigated at room temperature (19 ± 0.5 °C) in a batch system. Adsorption equilibrium was approached within 30 min. The adsorption kinetic data could be well described by the pseudo-second-order kinetic model, while the equilibrium data were well fitted using the Langmuir isotherm model. A maximum adsorption capacity of 32.36 mg/g was observed. The results of this study indicate that lignin has the potential to become an effective and economical adsorbent for the removal of Pb(II) ions from industrial wastewaters.


2021 ◽  
Author(s):  
Maoling Wu ◽  
Ling Ding ◽  
Jun Liao ◽  
Yong Zhang ◽  
Wenkun Zhu

Abstract In this work, the efficient extraction of uranium in solution using Al2O3-SiO2-T was reported. Kinetics and isotherm models indicated that the removal process of uranium onAl2O3-SiO2-T accorded with pseudo-second-order kinetic model and Langmuir isotherm model, which showed that the adsorption process was a uniform mono-layer chemical behavior. The maximum adsorption capacity of Al2O3-SiO2-T reached 738.7 mg g-1, which was higher than AlNaO6Si2 (349.8 mg g-1) and Al2O3-SiO2-NT (453.1 mg g-1), indicating that the addition of template could effectively improve the adsorption performance of Al2O3-SiO2 to uranium. Even after five cycles of adsorption-desorption, the removal percentage of uranium on Al2O3-SiO2-T remained 96%. Besides, the extraction efficiency of uranium on Al2O3-SiO2-T was 72.5% in simulated seawater, which suggested that the Al2O3-SiO2-T was expected to be used for uranium extraction from seawater. Further, the interaction mechanism between Al2O3-SiO2-T and uranium species was studied. The results showed that the electrostatic interaction and complexation played key roles in the adsorption process of Al2O3-SiO2-T to uranium.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Prasanna Kumarathilaka ◽  
Vimukthi Jayaweera ◽  
Hasintha Wijesekara ◽  
I. R. M. Kottegoda ◽  
S. R. D. Rosa ◽  
...  

Embedding nanoparticles into an inert material like graphene is a viable option since hybrid materials are more capable than those based on pure nanoparticulates for the removal of toxic pollutants. This study reports for the first time on Cr(VI) removal capacity of novel starch stabilized nanozero valent iron-graphene composite (NZVI-Gn) under different pHs, contact time, and initial concentrations. Starch coated NZVI-Gn composite was developed through borohydrate reduction method. The structure and surface of the composite were characterized by scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and point of zero charge (pHpzc). The surface area and pHpzc of NZVI-Gn composite were reported as 525 m2 g−1 and 8.5, respectively. Highest Cr(VI) removal was achieved at pH 3, whereas 67.3% was removed within first few minutes and reached its equilibrium within 20 min obeying pseudo-second-order kinetic model, suggesting chemisorption as the rate limiting process. The partitioning of Cr(VI) at equilibrium is perfectly matched with Langmuir isotherm and maximum adsorption capacity of the NZVI-Gn composite is 143.28 mg g−1. Overall, these findings indicated that NZVI-Gn composite could be utilized as an efficient and magnetically separable adsorbent for removal of Cr(VI).


2012 ◽  
Vol 11 (02) ◽  
pp. 1250019 ◽  
Author(s):  
RAJESH KUMAR ◽  
S. K. JAIN

This study was carried out to evaluate the environmental application of functionalized carbon nanotubes through the experimental removal of strontium (II) from water. The aim was to find the optimal condition for the removal of strontium from water under different conditions such as initial concentration of strontium, contact time and neutral pH. The functionalized multi wall carbon nanotubes (f-MWCNT) were characterized by FT-IR and scanning electron microscopy (SEM). The adsorption isotherms were correlated to Freundlich and Langmuir models and it was found that the adsorption data could be fitted better by Langmuir model than Freundlich one. The kinetic data shows that the adsorption describes well with the pseudo-second order kinetic model. Functionalized MWCNT can be used as good adsorbent for the removal of the strontium ions from polluted water according to results.


Sign in / Sign up

Export Citation Format

Share Document