Allergen homologues, pathogenesis-related 1, polygalacturonase, and pectin methyl esterase from Japanese hop

2020 ◽  
Vol 27 ◽  
Author(s):  
Seok Woo Jang ◽  
Kyoung Yong Jeong ◽  
Ji Eun Yuk ◽  
Jongsun Lee ◽  
Kyung Hee Park ◽  
...  

Background: Japanese hop is an important cause of weed pollinosis in East Asia. Its pollen is abundant in autumn. This pollen is known to be the cause of many allergic diseases. However, molecular characteristics of its allergens have not been elucidated. Objective: In this study, we produced recombinant proteins of allergen homologues from Japanese hop by the analysis of expressed sequence tags (EST), and evaluated its allergenicity. Methods: cDNA library was constructed using as little as 50 ng of total RNA from Japanese hop pollen. Allergen homologues were identified by the initial screening of 963 EST clones. Recombinant proteins were overexpressed in the E. coli expression system and purified using Ni-nitrilotriacetic acid-agarose. Purified proteins were analyzed by ELISA. Results: Japanese hop pathogenesis-related 1 protein (PR-1) shares 37.0 to 44.4% of amino acid sequence identity with Art v 2, Cuc m 3, and Cyn d 24. Pectin methyl esterase (PME) shows 23.2 to 50.2% of identities to Act d 7, Ole e 11, and Sal k 1. Polygalacturonase (PGs) shows 16.7 to 19.3% of identities to Phl p 13, Cry j 2, Cha o 2, Jun a 2, Pla a 2, and Pla or 2. IgE antibodies from Japanese hop allergy patients’ sera recognized PR-1 (3.4%), PME (13.8%), PGs (3.7%), and profilin (13.8%), respectively. Conclusion: Novel allergenic components were identified, even though low IgE reactivity was displayed reflecting the low degree of cross-reactivity with other pollen allergens. We believe that these molecules have worth further studies.

2014 ◽  
Vol 185 ◽  
pp. S70
Author(s):  
Boguslaw Lupa ◽  
Krzysztof Stawujak ◽  
Igor Rozanski ◽  
Justyna Stec-Niemczyk

2007 ◽  
Vol 85 (2) ◽  
pp. 203-208 ◽  
Author(s):  
Hongmei Dong ◽  
Xiaohu Xu ◽  
Mohong Deng ◽  
Xiaojun Yu ◽  
Hu Zhao ◽  
...  

The aim of the study was to prepare an active recombinant human perforin by comparing 5 candidate segments of human perforin. Full-length perforin, MAC1 (28–349 aa), MAC2 (166–369 aa), C-100, and N-60 of human perforin were selected as candidate active segments and designated, respectively, HP1, HP2, HP3, HP4, and HP5. The target genes were amplified by PCR and the products were individually subcloned into pGEM-T. The genes for HP1, HP2, HP3, and HP5 were subcloned into pET-DsbA, whereas pET-41a (+) was used as the expression vector of HP4. The fusion proteins were expressed in Escherichia coli BL21pLysS(DE3) and purified using nickel nitrilotriacetic acid (NTA) agarose affinity chromatography. The hemolysis microassay was used as an activity assay of fusion protein. From this study, we obtained the recombinant plasmids pGEM-T-HP1, -HP2, -HP3, -HP4 and -HP5, consisting of 1600, 960, 600, 300bp, and 180, respectively. From these recombinant plasmids, expression plasmids were successfully constructed and expressed in E. coli BL21pLysS(DE3). The resultant fusion proteins, affinity purified using Ni–NTA, were ~80, 58, 45, 44, and 30 kDa, respectively. The recombinant proteins were assayed for activity on hemolysis. HP2 and HP5 were the only recombinant proteins that were active in hemolysis, and the hemolytic function was concentration dependent. These results demonstrate that active recombinant forms of perforin can be synthesized in a prokaryote model. The recombinant N-60 and MAC1 (28–349 aa) of human perforin have the function of forming pores. Our study provides the experimental basis for further investigation on the application of perforin.


Microbiology ◽  
2004 ◽  
Vol 150 (7) ◽  
pp. 2135-2141 ◽  
Author(s):  
Rachel Preneta ◽  
K. G. Papavinasasundaram ◽  
Alain J. Cozzone ◽  
Bertrand Duclos

Several antigens of Mycobacterium tuberculosis, identified by monoclonal antibodies, have been previously cloned and are being exploited in the development of improved vaccines and diagnostic reagents. In this study, the molecular characteristics of two of these antigens, the immunodominant proteins Hsp 16·3 and Hsp 70, were analysed in further detail by assessing their capacity to undergo protein phosphorylation, a chemical modification frequently used by organisms to adjust to environmental variations. Hsp 16·3 was overproduced in an Escherichia coli expression system and purified to homogeneity. Upon incubation in the presence of radioactive ATP, it was shown to possess autophosphorylation activity. Two-dimensional analysis of its phosphoamino acid content revealed that it was modified exclusively at serine residues. In addition, cross-linking experiments demonstrated that it could tightly bind to ATP. Purified Hsp 70 was also shown to autophosphorylate but phosphorylation occurred exclusively at threonine residues. This reaction was found to be strongly stimulated by calcium ions. These data indicate that both structural and functional similarities exist between Hsp 16·3 (Acr) and α-crystallin, a eukaryotic protein which plays an important role in maintaining the transparency of the vertebrate eye, and that the functional properties of Hsp 70 from M. tuberculosis are similar to those of other bacterial members of the Hsp 70 family, particularly the E. coli homologue DnaK.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fei Du ◽  
Yun-Qi Liu ◽  
Ying-Shuang Xu ◽  
Zi-Jia Li ◽  
Yu-Zhou Wang ◽  
...  

AbstractEscherichia coli is the most widely used bacterium in prokaryotic expression system for the production of recombinant proteins. In BL21 (DE3), the gene encoding the T7 RNA polymerase (T7 RNAP) is under control of the strong lacUV5 promoter (PlacUV5), which is leakier and more active than wild-type lac promoter (PlacWT) under certain growth conditions. These characteristics are not advantageous for the production of those recombinant proteins with toxic or growth-burdened. On the one hand, leakage expression of T7 RNAP leads to rapid production of target proteins under non-inducing period, which sucks resources away from cellular growth. Moreover, in non-inducing or inducing period, high expression of T7 RNAP production leads to the high-production of hard-to-express proteins, which may all lead to loss of the expression plasmid or the occurrence of mutations in the expressed gene. Therefore, more BL21 (DE3)-derived variant strains with rigorous expression and different expression level of T7 RNAP should be developed. Hence, we replaced PlacUV5 with other inducible promoters respectively, including arabinose promoter (ParaBAD), rhamnose promoter (PrhaBAD), tetracycline promoter (Ptet), in order to optimize the production of recombinant protein by regulating the transcription level and the leakage level of T7 RNAP. Compared with BL21 (DE3), the constructed engineered strains had higher sensitivity to inducers, among which rhamnose and tetracycline promoters had the lowest leakage ability. In the production of glucose dehydrogenase (GDH), a protein that causes host autolysis, the engineered strain BL21 (DE3::ara) exhibited higher biomass, cell survival rate and foreign protein expression level than that of BL21 (DE3). In addition, these engineered strains had been successfully applied to improve the production of membrane proteins, including E. coli cytosine transporter protein (CodB), the E. coli membrane protein insertase/foldase (YidC), and the E. coli F-ATPase subunit b (Ecb). The engineered strains constructed in this paper provided more host choices for the production of recombinant proteins.


2021 ◽  
Vol 7 (12) ◽  
pp. 999
Author(s):  
Manisha Shukla ◽  
Pankaj Chandley ◽  
Harsimran Kaur ◽  
Anup K. Ghosh ◽  
Shivaprakash M. Rudramurthy ◽  
...  

Systemic candidiasis is the fourth most common bloodstream infection in ICU patients worldwide. Although C. albicans is a predominant species causing systemic candidiasis, infections caused by non-albicans Candida (NAC) species are increasingly becoming more prevalent globally along with the emergence of drug resistance. The diagnosis of systemic candidiasis is difficult due to the absence of significant clinical symptoms in patients. We investigated the diagnostic potential of recombinant secreted aspartyl proteinase 2 (rSap2) from C. parapsilosis for the detection of Candida infection. The rSap2 protein was successfully cloned, expressed and purified using Ni-NTA chromatography under denaturing conditions using an E. coli-based prokaryotic expression system, and refolded using a multi-step dialysis procedure. Structural analysis by CD and FTIR spectroscopy revealed the refolded protein to be in its near native conformation. Immunogenicity analysis demonstrated the rSap2 protein to be highly immunogenic as evident from significantly high titers of Sap2-specific antibodies in antigen immunized Balb/c mice, compared to sham-immunized controls. The diagnostic potential of rSap2 protein was evaluated using immunoblotting and ELISA assays using proven candidiasis patient serum and controls. Immunoblotting results indicate that reactivity to rSap2 was specific to candidiasis patient sera with no cross reactivity observed in healthy controls. Increased levels of anti-Sap2-specific Ig, IgG and IgM antibodies were observed in candidiasis patients compared to controls and was similar in sensitivity obtained when whole Candida was used as coating antigen. In summary, the rSap2 protein from C. parapsilosis has the potential to be used in the diagnosis of systemic candidiasis, providing a rapid, convenient, accurate and cost-effective strategy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gema Lozano Terol ◽  
Julia Gallego-Jara ◽  
Rosa Alba Sola Martínez ◽  
Adrián Martínez Vivancos ◽  
Manuel Cánovas Díaz ◽  
...  

Recombinant protein production for medical, academic, or industrial applications is essential for our current life. Recombinant proteins are obtained mainly through microbial fermentation, with Escherichia coli being the host most used. In spite of that, some problems are associated with the production of recombinant proteins in E. coli, such as the formation of inclusion bodies, the metabolic burden, or the inefficient translocation/transport system of expressed proteins. Optimizing transcription of heterologous genes is essential to avoid these drawbacks and develop competitive biotechnological processes. Here, expression of YFP reporter protein is evaluated under the control of four promoters of different strength (PT7lac, Ptrc, Ptac, and PBAD) and two different replication origins (high copy number pMB1′ and low copy number p15A). In addition, the study has been carried out with the E. coli BL21 wt and the ackA mutant strain growing in a rich medium with glucose or glycerol as carbon sources. Results showed that metabolic burden associated with transcription and translation of foreign genes involves a decrease in recombinant protein expression. It is necessary to find a balance between plasmid copy number and promoter strength to maximize soluble recombinant protein expression. The results obtained represent an important advance on the most suitable expression system to improve both the quantity and quality of recombinant proteins in bioproduction engineering.


2021 ◽  
Vol 948 (1) ◽  
pp. 012081
Author(s):  
K S Dewi ◽  
F D Wahyuni ◽  
S Salsabila ◽  
Aminah ◽  
N D Yanthi ◽  
...  

Abstract Colony-stimulating factor 3 (CSF3) is a glycoprotein with many therapeutic applications. In the Escherichia coli expression system, mRNA folding and stability near the translation initiation region (TIR) are known to influence protein expression significantly. We have successfully constructed the recombinant plasmid carrying genes encoding CSF3.1 and CSF3.2, which have different synonymous codon usage at N-terminal. In this study, we compared both expressions of CSF3.1 and CSF3.2 recombinant proteins in E. coli host. Recombinant plasmid pJ414-CSF3.1 and pJ414-CSF3.2 were transformed individually into E. coli NiCo21(DE3) competent cells by a heat-shock method, then spread on solid Lysogeny Broth (LB) medium containing ampicillin. Eight transformant colonies were selected and then expressed in 2xYT medium with the addition of IPTG inducer. Expression analysis was carried out using 15% SDS-PAGE gel. No significantly different band was observed in CSF3.1 protein expression compared to the negative control. In contrast, CSF3.2 protein can be expressed with a good amount at its expected size of 18 kDa. This result was strengthened by bioinformatics analysis which demonstrated the more open TIR of CSF3.2 than that of CSF3.1 Our study highlighted that AU-rich mRNA at the N-terminal is essential for efficient recognition of the ribosome binding site.


2010 ◽  
Vol 9 (1) ◽  
pp. 18 ◽  
Author(s):  
Norma A Valdez-Cruz ◽  
Luis Caspeta ◽  
Néstor O Pérez ◽  
Octavio T Ramírez ◽  
Mauricio A Trujillo-Roldán

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Anam Amir

In the most recent seven to eight years, the therapeutic recombinant proteins have rapidly expanded in the biotechnology domain due to its wide variety of needs. There has been significant development in the mammalian expression system for fine purification and increased level of expressed recombinant proteins [1,2]. Many drugs like tetracycline have been demonstrated on the Chinese Hamster Ovary cell line for promising multi control strategies and effective cytotoxicity. Mammalian expression system improves the proper glycosylation of recombinant proteins which are very helpful to increase solubility of product [3-6].             Meanwhile on the prokaryotic expression system, E. coli has proven to be an easier to handle, friendly and economical strain [2]. Recently these expression systems are using to work on antibody fragment productions and their proper folding with co-expression of chaperones [7]. Moreover E. coli has been used for the production of cancer cell penetrating peptides which promises the targeted delivery of drugs to specific effector cells only.  Yeast systems are also being used for the antibody fragments production and the high level production of insulin. Interestingly cell free expression systems are also participating in this game and that would be very fascinating to see in the coming years about cell extract medium for production of high level recombinant protein [8, 9]. Purification and optimization of recombinant protein has always been a challenging situation for scientists and they paid more attention to increase the overall yield of the product. Many affinity chromatography techniques has been introduced for efficient purification of protein of interest [10]. Despite these research and developments in methodologies to produce and purify the recombinant therapeutic protein, scientists still face the hurdles and challenges with all expression systems. Rationally E. coli produces inclusion bodies and many mammalian cell types do not show the same results with the same recombinant protein. [11]. So there is a requirement for adding the appropriate features to the expression systems focused to better improvising recovery, production and purification of recombinant protein. Copyright(c) The Author


Sign in / Sign up

Export Citation Format

Share Document