Approach to Neurotoxicity using Human iPSC Neurons: Consortium for Safety Assessment using Human iPS Cells

2020 ◽  
Vol 21 (9) ◽  
pp. 780-786
Author(s):  
Takafumi Shirakawa ◽  
Ikuro Suzuki

Neurotoxicity, as well as cardiotoxicity and hepatotoxicity, resulting from administration of a test article is considered a major adverse effect both pre-clinically and clinically. Among the different types of neurotoxicity occurring during the drug development process, seizure is one of the most serious one. Seizure occurrence is usually assessed using in vivo animal models, the Functional Observational Battery, the Irwin test or electroencephalograms. In in vitro studies, a number of assessments can be performed using animal organs/cells. Interestingly, recent developments in stem cell biology, especially the development of Human-Induced Pluripotent Stem (iPS) cells, are enabling the assessment of neurotoxicity in human iPS cell-derived neurons. Further, a Multi-Electrode Array (MEA) using rodent neurons is a useful tool for identifying seizure-inducing compounds. The Consortium for Safety Assessment using Human iPS Cells (CSAHi; http://csahi.org/en/) was established in 2013 by the Japan Pharmaceutical Manufacturers Association (JPMA) to verify the application of human iPS cell-derived neuronal cells to drug safety evaluation. The Neuro Team of CSAHi has been attempting to evaluate the seizure risk of compounds using the MEA platform. Here, we review the current status of neurotoxicity and recent work, including problems related to the use of the MEA assay with human iPS neuronal cell-derived neurons, and future developments.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1992-1992 ◽  
Author(s):  
Naoya Takayama ◽  
Koji Eto ◽  
Hiromitsu Nakauchi ◽  
Shinya Yamanaka

Abstract Human embryonic stem cells (hESCs) are proposed as an alternative source for transfusion therapy or studies of hematopoiesis. We have recently established an in vitro culture system whereby hESCs can be differentiated into hematopoietic progenitors within the ‘unique sac-like structures’ (ES-sacs), that are able to produce megakaryocytes and platelets (Takayama et al., Blood, 111, 5298–306, 2008). However there is a little concern that repetitive transfusion with same human ESC-derived platelets may induce immunological rejection against transfused platelets expressing allogenic HLA. Meanwhile, induced pluripotent stem (iPS) cells established from donor with identical HLA are well known as a potential and given source on platelet transfusion devoid of rejection. To examine if human iPS cells could generate platelets as well as from hESCs, we utilized 3 different human iPS cell lines; two were induced by transduction of 4 genes (Oct3/4, Klf4, Sox2, and c-Myc) in adult dermal fibroblasts, and one was by 3 genes without c-Myc. Sac-like structures (iPS-sac), inducible from 3 iPS cell lines, concentrated hematopoietic progenitors that expressed early hemato-endothelial markers, such as CD34, CD31, CD41a (integrin αIIb) and CD45. These progenitors were able to form hematopoietic colonies in semi-solid culture and differentiate into several blood cells including leukocytes, erythrocytes or platelets. Of these, obtained platelets responded to agonist stimulation, in which the function was as much as human ESC-derived platelets, as evidenced by PAC-1 binding with activated αIIbβ3 integrin or full spreading onto fibrinogen. These results collectively indicated that human dermal fibroblasts could generate functional and mature hematopoietic cells through the reprogramming process and this method may be useful for basic studies of hematopoietic disorders and clinical therapy in the future.


2020 ◽  
Vol 21 (9) ◽  
pp. 829-841
Author(s):  
Kiyoshi Takasuna ◽  
Katsuyuki Kazusa ◽  
Tomohiro Hayakawa

Current cardiac safety assessment platforms (in vitro hERG-centric, APD, and/or in vivo animal QT assays) are not fully predictive of drug-induced Torsades de Pointes (TdP) and do not address other mechanism-based arrhythmia, including ventricular tachycardia or ventricular fibrillation, or cardiac safety liabilities such as contractile and structural cardiotoxicity which are another growing safety concerns. We organized the Consortium for Safety Assessment using Human iPS cells (CSAHi; http://csahi.org/en/) in 2013, based on the Japan Pharmaceutical Manufacturers Association (JPMA), to verify the application of human iPS/ES cell-derived cardiomyocytes for drug safety evaluation. The CSAHi HEART team focused on comprehensive screening strategies to predict a diverse range of cardiotoxicities using recently introduced platforms such as the Multi-Electrode Array (MEA), cellular impedance, Motion Field Imaging (MFI), and optical imaging of Ca transient to identify strengths and weaknesses of each platform. Our study showed that hiPS-CMs used in these platforms could detect pharmacological responses that were more relevant to humans compared to existing hERG, APD, or Langendorff (MAPD/contraction) assays. Further, MEA and other methods such as impedance, MFI, and Ca transient assays provided paradigm changes of platforms for predicting drug-induced QT risk and/or arrhythmia or contractile dysfunctions. In contrast, since discordances such as overestimation (false positive) of arrhythmogenicity, oversight, or opposite conclusions in positive inotropic and negative chronotropic activities to some compounds were also confirmed, possibly due to their functional immaturity of hiPS-CMs, hiPS-CMs should be used in these platforms for cardiac safety assessment based upon their advantages and disadvantages.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2349-2349
Author(s):  
Ina Berniakovich ◽  
Leopoldo Laricchia-Robbio ◽  
Juan Carlos Izpisua

Abstract Abstract 2349 In vitro differentiation of human induced pluripotent stem (iPS) cells is a new way to obtain donor material for blood transplantation. However, this is a long process in the course of which cells are exposed to alien environmental factors, capable to change cellular properties and decrease cellular viability. Indeed, cells in vitro are exposed to mechanical stress, artificial growth surface, unnatural gas composition etc. This fact could partially explain why cells obtained during directed iPS cells differentiation have different qualities in comparison with the analogous population from in vivo. It is supposed that oxidative stress is the major underlying mechanism of negative influence of various in vitro environmental factors on cells. N-acetylcysteine (NAC) is a powerful antioxidant. Due to free radical scavenging ability, the principal function of NAC is rendered to the inhibition of cellular damage and cell death in response to reactive oxygen species. Cytoprotective function of NAC is well demonstrated both in vitro and in vivo. We have established a protocol to obtain hematopoietic stem cell-like cells from human iPS cells with a pick of their production at three weeks of differentiation. We analyzed how intracellular accumulation of reactive oxygen species and NO, as well as cell viability, apoptosis, stress resistance, mitochondrial membrane potential were changed during this process by comparing status of cultures at 1 and at 3 weeks of differentiation. We found that during differentiation cells progressively accumulated intracellular reactive oxygen species and increased production of NO. The level of apoptosis in culture was significantly higher at 3 weeks of differentiation than at 1 week. Cell viability, on the contrary, decreased from 1 week till 3 weeks of differentiation. Stress resistance quantified through the amount of cells resistant to the H2O2 treatment was also decreased in 3 weeks old cultures. We also demonstrated that during in vitro culture the mitochondrial membrane potential of the cells under basal conditions and upon stimulation with carbonyl cyanide m-chlorophenylhydrazone was decreased at 3 weeks of differentiation in comparison with that at 1 week. All these phenomena were reversed by NAC supplementation. Remarkably, NAC administration also improved the hematopoietic differentiation of human iPS cells in terms of production of CD34, CD45, CD43 positive cells, that showed normal functionality in colony forming unit assay. CD34+ cells obtained from NAC treated cultures also increased their migration towards SDF1, therefore showing an increased ability of our CD34+ cells to home into bone marrow. Our results suggest that supplementation with NAC is beneficial for the improvement of hematopoietic differentiation of human iPS cells. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Kasai T ◽  
Suga H ◽  
Sakakibara   ◽  
Ozone C ◽  
Matsumoto R ◽  
...  
Keyword(s):  

2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


2020 ◽  
Vol 54 (01) ◽  
pp. 37-46
Author(s):  
Kristina Friedland ◽  
Giacomo Silani ◽  
Anita Schuwald ◽  
Carola Stockburger ◽  
Egon Koch ◽  
...  

Abstract Background Silexan, a special essential oil from flowering tops of lavandula angustifolia, is used to treat subsyndromal anxiety disorders. In a recent clinical trial, Silexan also showed antidepressant effects in patients suffering from mixed anxiety-depression (ICD-10 F41.2). Since preclinical data explaining antidepressant properties of Silexan are missing, we decided to investigate if Silexan also shows antidepressant-like effects in vitro as well as in vivo models. Methods We used the forced swimming test (FST) in rats as a simple behavioral test indicative of antidepressant activity in vivo. As environmental events and other risk factors contribute to depression through converging molecular and cellular mechanisms that disrupt neuronal function and morphology—resulting in dysfunction of the circuitry that is essential for mood regulation and cognitive function—we investigated the neurotrophic properties of Silexan in neuronal cell lines and primary hippocampal neurons. Results The antidepressant activity of Silexan (30 mg/kg BW) in the FST was comparable to the tricyclic antidepressant imipramine (20 mg/kg BW) after 9-day treatment. Silexan triggered neurite outgrowth and synaptogenesis in 2 different neuronal cell models and led to a significant increase in synaptogenesis in primary hippocampal neurons. Silexan led to a significant phosphorylation of protein kinase A and subsequent CREB phosphorylation. Conclusion Taken together, Silexan demonstrates antidepressant-like effects in cellular as well as animal models for antidepressant activity. Therefore, our data provides preclinical evidence for the clinical antidepressant effects of Silexan in patients with mixed depression and anxiety.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Manuel Pedro Jimenez-García ◽  
Antonio Lucena-Cacace ◽  
Daniel Otero-Albiol ◽  
Amancio Carnero

AbstractThe EMX (Empty Spiracles Homeobox) genes EMX1 and EMX2 are two homeodomain gene members of the EMX family of transcription factors involved in the regulation of various biological processes, such as cell proliferation, migration, and differentiation, during brain development and neural crest migration. They play a role in the specification of positional identity, the proliferation of neural stem cells, and the differentiation of certain neuronal cell phenotypes. In general, they act as transcription factors in early embryogenesis and neuroembryogenesis from metazoans to higher vertebrates. The EMX1 and EMX2’s potential as tumor suppressor genes has been suggested in some cancers. Our work showed that EMX1/EMX2 act as tumor suppressors in sarcomas by repressing the activity of stem cell regulatory genes (OCT4, SOX2, KLF4, MYC, NANOG, NES, and PROM1). EMX protein downregulation, therefore, induced the malignance and stemness of cells both in vitro and in vivo. In murine knockout (KO) models lacking Emx genes, 3MC-induced sarcomas were more aggressive and infiltrative, had a greater capacity for tumor self-renewal, and had higher stem cell gene expression and nestin expression than those in wild-type models. These results showing that EMX genes acted as stemness regulators were reproduced in different subtypes of sarcoma. Therefore, it is possible that the EMX genes could have a generalized behavior regulating proliferation of neural crest-derived progenitors. Together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-altering populations or cancer stem cells, acting as tumor suppressors in sarcoma.


2021 ◽  
Vol 9 (4) ◽  
pp. 868
Author(s):  
Max Maurin ◽  
Florence Fenollar ◽  
Oleg Mediannikov ◽  
Bernard Davoust ◽  
Christian Devaux ◽  
...  

SARS-CoV-2 is currently considered to have emerged from a bat coronavirus reservoir. However, the real natural cycle of this virus remains to be elucidated. Moreover, the COVID-19 pandemic has led to novel opportunities for SARS-CoV-2 transmission between humans and susceptible animal species. In silico and in vitro evaluation of the interactions between the SARS-CoV-2 spike protein and eucaryotic angiotensin-converting enzyme 2 (ACE2) receptor have tentatively predicted susceptibility to SARS-CoV-2 infection of several animal species. Although useful, these data do not always correlate with in vivo data obtained in experimental models or during natural infections. Other host biological properties may intervene such as the body temperature, level of receptor expression, co-receptor, restriction factors, and genetic background. The spread of SARS-CoV-2 also depends on the extent and duration of viral shedding in the infected host as well as population density and behaviour (group living and grooming). Overall, current data indicate that the most at-risk interactions between humans and animals for COVID-19 infection are those involving certain mustelids (such as minks and ferrets), rodents (such as hamsters), lagomorphs (especially rabbits), and felines (including cats). Therefore, special attention should be paid to the risk of SARS-CoV-2 infection associated with pets.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 181
Author(s):  
Loredana G. Marcu ◽  
Eva Bezak ◽  
Dylan D. Peukert ◽  
Puthenparampil Wilson

FLASH radiotherapy, or the administration of ultra-high dose rate radiotherapy, is a new radiation delivery method that aims to widen the therapeutic window in radiotherapy. Thus far, most in vitro and in vivo results show a real potential of FLASH to offer superior normal tissue sparing compared to conventionally delivered radiation. While there are several postulations behind the differential behaviour among normal and cancer cells under FLASH, the full spectra of radiobiological mechanisms are yet to be clarified. Currently the number of devices delivering FLASH dose rate is few and is mainly limited to experimental and modified linear accelerators. Nevertheless, FLASH research is increasing with new developments in all the main areas: radiobiology, technology and clinical research. This paper presents the current status of FLASH radiotherapy with the aforementioned aspects in mind, but also to highlight the existing challenges and future prospects to overcome them.


Sign in / Sign up

Export Citation Format

Share Document