Nano-Carriers of Combination Tumor Physical Stimuli-Responsive Therapies

2020 ◽  
Vol 17 (7) ◽  
pp. 577-587
Author(s):  
Weiqiu Jin ◽  
Changzi Dong ◽  
Dengtian Yang ◽  
Ruotong Zhang ◽  
Tianshu Jiang ◽  
...  

With the development of nanotechnology, Tumor Physical Stimuli-Responsive Therapies (TPSRTs) have reached a new stage because of the remarkable characteristics of nanocarriers. The nanocarriers enable such therapies to overcome the drawbacks of traditional therapies, such as radiotherapy or chemotherapy. To further explore the possibility of the nanocarrier-assisted TPSRTs, scientists have combined different TPSRTs <i>via</i> the platform of nanocarriers into combination TPSRTs, which include Photothermal Therapy (PTT) with Magnetic Hyperthermia Therapy (MHT), PTT with Sonodynamic Therapy (SDT), MHT with Photodynamic Therapy (PDT), and PDT with PTT. To achieve such therapies, it requires to fully utilize the versatile functions of a specific nanocarrier, which depend on a pellucid understanding of the traits of those nanocarriers. This review covers the principles of different TPSRTs and their combinations, summarizes various types of combination TPSRTs nanocarriers and their therapeutic effects on tumors, and discusses the current disadvantages and future developments of these nanocarriers in the application of combination TPSRTs.

2021 ◽  
Vol 8 ◽  
Author(s):  
You Zhou ◽  
Wenmin Deng ◽  
Mulan Mo ◽  
Dexu Luo ◽  
Houhe Liu ◽  
...  

Bacterial infections are common diseases causing tremendous deaths in clinical settings. It has been a big challenge to human beings because of the antibiotics abuse and the newly emerging microbes. Photodynamic therapy (PDT) is a reactive oxygen species-based therapeutic technique through light-activated photosensitizer (PS). Recent studies have highlighted the potential of PDT as an alternative method of antibacterial treatment for its broad applicability and high efficiency. However, there are some shortcomings due to the low selectivity and specificity of PS. Growing evidence has shown that drug delivery nanoplatforms have unique advantages in enhancing therapeutic efficacy of drugs. Particularly, stimuli-responsive nanoplatforms, as a promising delivery system, provide great opportunities for the effective delivery of PS. In the present mini-review, we briefly introduced the unique microenvironment in bacterial infection tissues and the application of PDT on bacterial infections. Then we review the stimuli-responsive nanoplatforms (including pH-, enzymes-, redox-, magnetic-, and electric-) used in PDT against bacterial infections. Lastly, some perspectives have also been proposed to further promote the future developments of antibacterial PDT.


Theranostics ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 1288-1302 ◽  
Author(s):  
Alberto Curcio ◽  
Amanda K. A. Silva ◽  
Sonia Cabana ◽  
Ana Espinosa ◽  
Benoit Baptiste ◽  
...  

2016 ◽  
Vol 4 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Lu Han ◽  
Yang Zhang ◽  
Xu-Wei Chen ◽  
Yang Shu ◽  
Jian-Hua Wang

Protein-modified hollow copper sulfide nanoparticles carrying indocyanine green (ICG) facilitate combined therapeutic effects including photothermal therapy of CuS nanocarriers and cytotoxic effects of photodynamic and photothermal therapy by ICG.


Author(s):  
Lili Pan ◽  
Yu Ma ◽  
Xiaoai Wu ◽  
Huawei Cai ◽  
Feng Qin ◽  
...  

Abstract:: As a group of heterocyclic macrocycle organic natural compounds occurring universally in animal tissues and plants, porphyrins are composed of four modified pyrrole subunits. Porphyrin analogues/derivatives possess multiple biochemical properties because of their unique structures and have been extensively investigated in cancer treatment. Studies have shown that porphyrins and their derivatives have the ability to locate in tumor cells in a variety of human cancers, and these compounds not only exhibit potent therapeutic effects as photodynamic agents but also show promising properties in medicinal imaging, such as MRI, photoacoustic imaging, fluorescence imaging and PET/SPECT imaging. This paper reviews the recent reports of porphyrin derivatives as therapeutic agents used in tumor therapies, such as sonodynamic therapy, photodynamic therapy and radiotherapy, as well as imaging agents for multimodality tumor imaging. The limitations of porphyrin-based compounds in tumor treatments and future prospects are also summarized.


Author(s):  
Feng Wu ◽  
Fei Qiu ◽  
Siew Anthony Wai-Keong ◽  
Yong Diao

Background: In recent years, the emergence of stimuli-responsive nanoparticles makes drug delivery more efficient. As an intelligent and effective targeted delivery platform, it can reduce the side effects generated during drug transportation while enhancing the treatment efficacy. The stimuli-responsive nanoparticles can respond to different stimuli at corresponding times and locations to deliver and release their drugs and associated therapeutic effects. Objective: This review aims to inform researchers on the latest advances in the application of dual-stimuli responsive nanoparticles in precise drug delivery, with special attention to their design, drug release properties, and therapeutic effects. Syntheses of nanoparticles with simultaneous or sequential responses to two or more stimuli (pH-redox, pH-light, redoxlight, temperature-magnetic, pH-redox-temperature, redox-enzyme-light, etc.) and the applications of such responsivity properties for drugs control and release have become a hot topic of recent research. Methods: A database of relevant information for the production of this review was sourced, screened and analyzed from Pubmed, Web of Science, SciFinder by searching for the following keywords: “dual-stimuli responsive”, “controlled release”, “cancer therapy”, “synergistic treatment”. Results: Notably, the nanoparticles with dual-stimuli responsive function have an excellent control effect on drug delivery and release, playing a crucial part in the treatment of tumors. They can improve the encapsulation and delivery efficiency of hydrophobic chemotherapy drugs, combine chemo-photothermal therapies, apply imaging function in the diagnosis of tumors and even conduct multi-drugs delivery to overcome multi-drugs resistance (MDR). Conclusion: With the development of smart dual-stimuli responsive nanoparticles, cancer treatment methods will become more diverse and effective. All the stimuli-responsive nanoparticles functionalities exhibited their characteristics individually within the single nanosystem.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Yousefimehr ◽  
Saeed Jafarirad ◽  
Roya Salehi ◽  
Mohammad Sadegh Zakerhamidi

AbstractIn this study, we report a facile green-synthesis route for the fabrication of reduced graphene oxide (rGO) using biomass of Brassica oleracea var. gongylodes (B. oleracea). In addition, we have attempted to provide a green synthesis approach to prepare Gold nanoparticles (Au NPs) on the surface of rGO by using stem extract of B. oleracea. The synthesized Au/rGO nanocomposite was evaluated using UV–visible and FTIR spectroscopy, XRD, Raman, FE-SEM, EDX, AFM and DLS techniques. The obtained results demonstrated that the synthesized Au NPs on the surface of rGO was spherical with sizes ranging about 12–18 nm. The Au/rGO NC was, also, developed as photo-synthesizer system for the photothermal therapy (PTT) of MCF7 breast cancer cells. The near-infrared (NIR) photothermal properties of Au/rGO NCs was evaluated using a continuous laser at 808 nm with power densities of 1 W.cm−2. Their photothermal efficacy on MCF7 breast cancer cells after optimizing the proper concentration of the NCs were evaluated by MTT assay, Cell cycle and DAPI staining. In addition, the potential of the synthesized Au/rGO NCs on reactive oxygen species generating and antioxidant activity were assessed by DPPH. Au/rGO NCs possess high capacity to light-to-heat conversion for absorption in range NIR light, and it is able to therapeutic effects on MCF7 cells at a low concentration. The maximum amount of cell death is 40.12% which was observed in treatment groups that received a combination of Au/rGO NCs and laser irradiation. The results demonstrate that the nanomaterials synthesized by green approach lead to efficient destruction of cancer cell and might thus serve as an excellent theranostic agent in Photothermal therapy applications.


2021 ◽  
Vol 22 (15) ◽  
pp. 8106
Author(s):  
Tianming Song ◽  
Yawei Qu ◽  
Zhe Ren ◽  
Shuang Yu ◽  
Mingjian Sun ◽  
...  

Despite the numerous available treatments for cancer, many patients succumb to side effects and reoccurrence. Zinc oxide (ZnO) quantum dots (QDs) are inexpensive inorganic nanomaterials with potential applications in photodynamic therapy. To verify the photoluminescence of ZnO QDs and determine their inhibitory effect on tumors, we synthesized and characterized ZnO QDs modified with polyvinylpyrrolidone. The photoluminescent properties and reactive oxygen species levels of these ZnO/PVP QDs were also measured. Finally, in vitro and in vivo experiments were performed to test their photodynamic therapeutic effects in SW480 cancer cells and female nude mice. Our results indicate that the ZnO QDs had good photoluminescence and exerted an obvious inhibitory effect on SW480 tumor cells. These findings illustrate the potential applications of ZnO QDs in the fields of photoluminescence and photodynamic therapy.


2021 ◽  
Vol 4 (2) ◽  
pp. 2190-2210
Author(s):  
Marcus Vinícius-Araújo ◽  
Navadeep Shrivastava ◽  
Ailton A. Sousa-Junior ◽  
Sebastiao A. Mendanha ◽  
Ricardo Costa De Santana ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2253-2291
Author(s):  
Amin Shiralizadeh Dezfuli ◽  
Elmira Kohan ◽  
Sepand Tehrani Fateh ◽  
Neda Alimirzaei ◽  
Hamidreza Arzaghi ◽  
...  

Organic dots is a term used to represent materials including graphene quantum dots and carbon quantum dots because they rely on the presence of other atoms (O, H, and N) for their photoluminescence or fluorescence properties. Cargo delivery, bio-imaging, photodynamic therapy and photothermal therapy are major biomedical applications of organic dots.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoxia Song ◽  
Zhi Chen ◽  
Xue Zhang ◽  
Junfeng Xiong ◽  
Teng Jiang ◽  
...  

AbstractMagnetic micro/nanorobots attracted much attention in biomedical fields because of their precise movement, manipulation, and targeting abilities. However, there is a lack of research on intelligent micro/nanorobots with stimuli-responsive drug delivery mechanisms for cancer therapy. To address this issue, we developed a type of strong covalently bound tri-bead drug delivery microrobots with NIR photothermal response azobenzene molecules attached to their carboxylic surface groups. The tri-bead microrobots are magnetic and showed good cytocompatibility even when their concentration is up to 200 µg/mL. In vitro photothermal experiments demonstrated fast NIR-responsive photothermal property; the microrobots were heated to 50 °C in 4 min, which triggered a significant increase in drug release. Motion control of the microrobots inside a microchannel demonstrated the feasibility of targeted therapy on tumor cells. Finally, experiments with lung cancer cells demonstrated the effectiveness of targeted chemo-photothermal therapy and were validated by cell viability assays. These results indicated that tri-bead microrobots have excellent potential for targeted chemo-photothermal therapy for lung cancer cell treatment.


Sign in / Sign up

Export Citation Format

Share Document