scholarly journals Stimuli-Responsive Nanoplatform-Assisted Photodynamic Therapy Against Bacterial Infections

2021 ◽  
Vol 8 ◽  
Author(s):  
You Zhou ◽  
Wenmin Deng ◽  
Mulan Mo ◽  
Dexu Luo ◽  
Houhe Liu ◽  
...  

Bacterial infections are common diseases causing tremendous deaths in clinical settings. It has been a big challenge to human beings because of the antibiotics abuse and the newly emerging microbes. Photodynamic therapy (PDT) is a reactive oxygen species-based therapeutic technique through light-activated photosensitizer (PS). Recent studies have highlighted the potential of PDT as an alternative method of antibacterial treatment for its broad applicability and high efficiency. However, there are some shortcomings due to the low selectivity and specificity of PS. Growing evidence has shown that drug delivery nanoplatforms have unique advantages in enhancing therapeutic efficacy of drugs. Particularly, stimuli-responsive nanoplatforms, as a promising delivery system, provide great opportunities for the effective delivery of PS. In the present mini-review, we briefly introduced the unique microenvironment in bacterial infection tissues and the application of PDT on bacterial infections. Then we review the stimuli-responsive nanoplatforms (including pH-, enzymes-, redox-, magnetic-, and electric-) used in PDT against bacterial infections. Lastly, some perspectives have also been proposed to further promote the future developments of antibacterial PDT.

Author(s):  
Zhijia Wang ◽  
Fu-Jian Xu ◽  
Bingran Yu

Photodynamic therapy (PDT) has attracted tremendous attention in the antitumor and antimicrobial areas. To enhance the water solubility of photosensitizers and facilitate their accumulation in the tumor/infection site, polymeric materials are frequently explored as delivery systems, which are expected to show target and controllable activation of photosensitizers. This review introduces the smart polymeric delivery systems for the PDT of tumor and bacterial infections. In particular, strategies that are tumor/bacteria targeted or activatable by the tumor/bacteria microenvironment such as enzyme/pH/reactive oxygen species (ROS) are summarized. The similarities and differences of polymeric delivery systems in antitumor and antimicrobial PDT are compared. Finally, the potential challenges and perspectives of those polymeric delivery systems are discussed.


2020 ◽  
Vol 17 (7) ◽  
pp. 577-587
Author(s):  
Weiqiu Jin ◽  
Changzi Dong ◽  
Dengtian Yang ◽  
Ruotong Zhang ◽  
Tianshu Jiang ◽  
...  

With the development of nanotechnology, Tumor Physical Stimuli-Responsive Therapies (TPSRTs) have reached a new stage because of the remarkable characteristics of nanocarriers. The nanocarriers enable such therapies to overcome the drawbacks of traditional therapies, such as radiotherapy or chemotherapy. To further explore the possibility of the nanocarrier-assisted TPSRTs, scientists have combined different TPSRTs <i>via</i> the platform of nanocarriers into combination TPSRTs, which include Photothermal Therapy (PTT) with Magnetic Hyperthermia Therapy (MHT), PTT with Sonodynamic Therapy (SDT), MHT with Photodynamic Therapy (PDT), and PDT with PTT. To achieve such therapies, it requires to fully utilize the versatile functions of a specific nanocarrier, which depend on a pellucid understanding of the traits of those nanocarriers. This review covers the principles of different TPSRTs and their combinations, summarizes various types of combination TPSRTs nanocarriers and their therapeutic effects on tumors, and discusses the current disadvantages and future developments of these nanocarriers in the application of combination TPSRTs.


Author(s):  
Chen-Jing Sun ◽  
Li-Ping Zhao ◽  
Rui Wang

: With the development of industrialization, the global environmental pollution and energy crisis are becoming increasingly serious. Organic pollutants pose a serious health threat to human beings and other organisms. The removal of organic pollutants in environment has become a global challenge. The photocatalytic technology has been widely used in the degradation of organic pollutants with its characteristics of simple process, high efficiency, thorough degradation and no secondary pollution. However, the single photocatalyst represented by TiO2 has disadvantages of low light utilization rate and high recombination rate of photocarriers. Building heterojunction is considered one of the most effective methods to enhance the photocatalytic performance of single photocatalyst, which can improve the separation efficiency of photocarriers and utilization of visible light. The classical heterojunction can be divided into four different cases: type I, typeⅡ, p–n heterojunctions and Z-scheme junction. In this paper, the recent progress in the treatment of organic pollution by heterostructure photocatalysts is summarized and the mechanism of heterostructure photocatalysts for the treatment of organic pollutants is reviewed. It is expected that this paper can deepen the understanding of heterostructure photocatalysts and provide guidance for high efficient photocatalytic degradation of organic pollutants in the future.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2184
Author(s):  
Niamh O’Kennedy ◽  
Ruedi Duss ◽  
Asim K Duttaroy

Our understanding of platelet functionality has undergone a sea change in the last decade. No longer are platelets viewed simply as regulators of haemostasis; they are now acknowledged to be pivotal in coordinating the inflammatory and immune responses. This expanded role for platelets brings new opportunities for controlling a range of health conditions, targeting platelet activation and their interactions with other vascular cells. Antiplatelet drugs may be of wider utility than ever expected but often cause platelet suppression too strong to be used out of clinical settings. Dietary antiplatelets represent a nutritional approach that can be efficacious while safe for general use. In this review, we discuss potential new uses for dietary antiplatelets outside the field of cardiovascular health, with specific reference to the water-soluble tomato extract Fruitflow®. Its uses in different aspects of inflammation and immune function are discussed, highlighting exercise-induced inflammation, mediating the effects of air pollution, and controlling thrombotic aspects of the immune response. Potential future developments in women’s health, erectile dysfunction, and the allergic response indicate how broad the utility of dietary antiplatelets can be.


Author(s):  
Duc Loc Sai ◽  
Jieun Lee ◽  
Duc Long Nguyen ◽  
Young-Pil Kim

AbstractPhotodynamic therapy (PDT) has been considered a noninvasive and cost-effective modality for tumor treatment. However, the complexity of tumor microenvironments poses challenges to the implementation of traditional PDT. Here, we review recent advances in PDT to resolve the current problems. Major breakthroughs in PDTs are enabling significant progress in molecular medicine and are interconnected with innovative strategies based on smart bio/nanomaterials or therapeutic insights. We focus on newly developed PDT strategies designed by tailoring photosensitive reactive oxygen species generation, which include the use of proteinaceous photosensitizers, self-illumination, or oxygen-independent approaches. While these updated PDT platforms are expected to enable major advances in cancer treatment, addressing future challenges related to biosafety and target specificity is discussed throughout as a necessary goal to expand the usefulness of PDT.


2021 ◽  
Vol 28 ◽  
Author(s):  
Mariana Miretti ◽  
Cesar German Prucca ◽  
Tomas Cristian Tempesti ◽  
Maria Teresa Baumgartner

: Photodynamic therapy has emerged as an effective therapeutic alternative to treat oncological, cardiovascular, dermatological, infectious, and ophthalmic diseases. Photodynamic therapy combines the action of a photosensitizer with light in the presence of oxygen to generate reactive oxygen species capable of reacting with cellular components resulting in injury and, consequently, inducing cellular death. Phthalocyanines are considered good photosensitizers, although most of them are lipophilic, difficulting their administration for clinical use. A strategy to overcome the lack of solubility of phthalocyanines in aqueous media is to incorporate them into different delivery systems. The present review aimed to summarize the current status of the main drug delivery systems used for Zn and Al phthalocyanines and their effect in photodynamic therapy, reported in the last five years. Liposomes, polymeric micelles, polymeric nanoparticles, and gold-nanoparticles constituted some of the most used carriers and were discussed in this review. The latest studies reported strongly suggests that the application of nanotechnologies as delivery systems allow an increase in photodynamic therapy efficacy and reduce side-effects associated with the phthalocyanine administration, which represents a promise for cancer treatments.


Author(s):  
Cátia Pinho ◽  
Ana Oliveira ◽  
Daniela Oliveira ◽  
João Dinis ◽  
Alda Marques

The development of graphical user interfaces (GUIs) has been an emergent demand in the area of healthcare technologies. Specifically for respiratory healthcare there is a lack of tools to produce a complete multimedia database, where respiratory sounds and other clinical data are available in a single repository. This is essential for a complete patients' assessment and management in research/clinical settings. Therefore, this study aimed to develop a usable interface to collect and organise respiratory-related data in a single multimedia database. A GUI, named LungSounds@UA, composed by a multilayer of windows, was developed. The usability of the user-centred interface was assessed in a pilot study and in an evaluation session. The users testified the utility of the application and its great potential for research/clinical settings. However, some drawbacks were identified, such as a certain difficulty to intuitively navigate in the great amount of the available information, which will inform future developments.


Sign in / Sign up

Export Citation Format

Share Document