Indazole and its derivatives in cardiovascular diseases: Overview, current scenario and future perspectives

Author(s):  
Shravan Kumar Uppulapu ◽  
Md Jahangir Alam ◽  
Santosh Kumar ◽  
Sanjay Kumar Banerjee

: Indazoles are a class of heterocyclic compounds with a bicyclic ring structure composed of a pyrazole ring and a benzene ring. Indazole-containing compounds with various functional groups have important pharmacological activities and can be used as structural motifs in designing novel drug molecules. Some of the indazole-containing molecules are approved by FDA and are already in the market. However, very few drugs with indazole rings have been developed against cardiovascular diseases. This review aims to summarize the structural and pharmacological functions of indazole derivatives which have shown efficacy against cardiovascular pathologies in experimental settings.

Author(s):  
Seema U. Shinde ◽  
Nikita D. Gidde ◽  
Pradnya P. Shinde ◽  
Akshay B. Kadam

The simplest type of structures with sizes in the nm range will be nanoparticles. Any atom mean that is associated by intensity with other atoms within a 'limited' distance may be claimed to be a nanoparticle in principle. The creation of novel drug delivery systems using nanoparticles has seen an exponential interest in recent years. In terms of high stability, high precision, high drug carrying capability, managed release potential, the possibility of use in various routes of administration and the ability to deliver both hydrophilic and hydrophobic drug molecules, nanoparticles may offer significant advantages over conventional drug delivery. The emphasis of this study is on classification, types, synthesis, preparation methods, characterization, use, nanoparticle advantages, and health perspectives.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rafael Fernades Costa ◽  
Larissa Córdova Turones ◽  
Keilah Valéria Naves Cavalcante ◽  
Ismael Aureliano Rosa Júnior ◽  
Carlos Henrique Xavier ◽  
...  

Low quality of life and life-threatening conditions often demand pharmacological screening of lead compounds. A spectrum of pharmacological activities has been attributed to pyrazole analogs. The substitution, replacement, or removal of functional groups on a pyrazole ring appears consistent with diverse molecular interactions, efficacy, and potency of these analogs. This mini-review explores cytotoxic, cytoprotective, antinociceptive, anti-inflammatory, and antidepressant activities of some pyrazole analogs to advance structure-related pharmacological profiles and rational design of new analogs. Numerous interactions of these derivatives at their targets could impact future research considerations and prospects while offering opportunities for optimizing therapeutic activity with fewer adverse effects.


Author(s):  
Mohammad Asif ◽  
Mohd. Imran

: Heterocyclic compounds are important because they have almost all types of pharmacological properties. Due to these properties of heterocyclic compounds, they attracted the researchers for the development of more effective newer drug molecules. In this review, we are focused on benzothiazole and its derivatives, which are used for the synthesis of various biologically active molecules. Benzothiazole derivatives have been possessed the various type of pharmacological activities like antimicrobial, anti-inflammatory, analgesic, anticonvulsant, antiviral, anthelmintic, antioxidant, anticancer, and other anticipated activities. Hence, structural alterations have resulted in different benzothiazole derivatives that illustrated a wide variety of pharmacological activities.


Author(s):  
Ioannis D. Karantas ◽  
Mehmet Evren Okur ◽  
Neslihan Üstündağ Okur ◽  
Panoraia I. Siafaka

Background: Cardiovascular diseases are the leading deadly cause in the modern world and dyslipidemia is one of the major risk factors. Objective: The current therapeutic strategies for cardiovascular diseases involve the management of risk factors especially dyslipidemia and hypertension. Recently, the updated guidelines of dyslipidemia management were presented, and the newest data were included in terms of diagnosis, imaging and treatment. Methods: In this targeted literature review, the researchers presented the newest evidence on dyslipidemia management by including the current therapeutic goals for dyslipidemia. In addition, the novel diagnostic tools based on theranostics are shown. Finally, the future perspectives on treatment based on novel drug delivery systems and their potential to be used in clinical trials were also analyzed. Results: It should be noted that dyslipidemia management can be achieved by the strict lifestyle change, by adopting a healthy life and the choice of the most suitable drug.


Author(s):  
Wilfred Chiahemen Agber ◽  
Raphael Wanger Anyam

Plants are considered to be medicinal if they possess pharmacological activities of possible therapeutic use. A narrative perspective of medicinal evidences on the biochemical effectiveness of plant extracts used in the treatment of diabetes in rats was reviewed. The review was designed to highlight the chemical constituents and pharmacological potentials of some Nigeria plants used in experimental diabetes. The literature survey reveals the therapeutic efficiency of crude aqueous extracts of many plant species used either independently or in combination with some standard drugs for the treatment of diabetes with rats. Identified literature show a considerable degree of overlap and consistency in methods and results of findings. Some plant extracts were reported to be more effective in combination with other plant extracts and also a few were more effective than many standard drugs. There is a good number of quality research regarding plant extracts for the treatment and management of diabetes in rats. These plants identified as having anti diabetic potentials may be remedy for the treatment and management of diabetes in human. Research should explode more about these valuable plants to ascertain the dosage that may be required for man and if possible develop novel drug molecules for the future.


Author(s):  
Shukla PK ◽  
Singh MP ◽  
Patel R

Indole and its derivatives have engaged a unique place in the chemistry of nitrogen heterocyclic compounds. The recognition of the plant growthhormone, heteroauxin, the significant amino acids, tryptamine & tryptophan and anti-inflammatory drug, indomethacine are the imperativederivatives of indole which have added stimulus to this review work. Isatin (1H-indole-2,3-dione), an indole derivative of plant origin. Althoughit is a naturally occurring compound, but was synthesized by Erdmann and Laurent in 1840 before it was found in nature. Isatin is a versatileprecursor for many biologically active molecules and its diversified nature makes it a versatile substrate for further modifications. It is concernedin many pharmacological activities like anti-malarial, antiviral, anti-allergic, antimicrobial etc; isatin and its derivatives have been also found todemonstrate promising outcomes against various cancer cell lines. This review provides a brief overview on the recent advances and futureperspectives on chemistry and biological aspects of isatin and its derivatives reported in the recent past.


2019 ◽  
Vol 24 (32) ◽  
pp. 3739-3757 ◽  
Author(s):  
Chandrabose Selvaraj ◽  
Sanjeev K. Singh

Nucleic acid is the key unit and a predominant genetic material for interpreting the fundamental basis of genetic information in an organism and now it is used for the evolution of a novel group of therapeutics. To identify the potential impact on the biological science, it receives high recognition in therapeutic applications. Due to its selective recognition of molecular targets and pathways, DNA significantly imparts tremendous specificity of action. Examining the properties of DNA holds numerous advantages in assembly, interconnects, computational elements, along with potential applications of DNA self-assembly and scaffolding include nanoelectronics, biosensors, and programmable/autonomous molecular machines. The interaction of low molecular weight, small molecules with DNA is a significant feature in pharmacology. Based on the mode of binding mechanisms, small molecules are categorized as intercalators and groove binders having a significant role in target-based drug development. The understanding mechanism of drug-DNA interaction plays an important role in the development of novel drug molecules with more effective and lesser side effects. This article attempts to outline those interactions of drug-DNA with both experimental and computational advances, including ultraviolet (UV) -visible spectroscopy, fluorescent spectroscopy, circular dichroism, nuclear magnetic resonance (NMR), molecular docking and dynamics, and quantum mechanical applications.


2020 ◽  
Vol 21 (11) ◽  
pp. 1085-1096 ◽  
Author(s):  
Rajesh Kumar Gupta ◽  
Girish R. Apte ◽  
Kiran Bharat Lokhande ◽  
Satyendra Mishra ◽  
Jayanta K. Pal

: With the emergence of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the whole world is suffering from atypical pneumonia, which resulted in more than 559,047 deaths worldwide. In this time of crisis and urgency, the only hope comes from new candidate vaccines and potential antivirals. However, formulating new vaccines and synthesizing new antivirals are a laborious task. Therefore, considering the high infection rate and mortality due to COVID-19, utilization of previous information, and repurposing of existing drugs against valid viral targets have emerged as a novel drug discovery approach in this challenging time. The transmembrane spike (S) glycoprotein of coronaviruses (CoVs), which facilitates the virus’s entry into the host cells, exists in a homotrimeric form and is covered with N-linked glycans. S glycoprotein is known as the main target of antibodies having neutralizing potency and is also considered as an attractive target for therapeutic or vaccine development. Similarly, targeting of N-linked glycans of S glycoprotein envelope of CoV via carbohydrate-binding agents (CBAs) could serve as an attractive therapeutic approach for developing novel antivirals. CBAs from natural sources like lectins from plants, marine algae and prokaryotes and lectin mimics like Pradimicin-A (PRM-A) have shown antiviral activities against CoV and other enveloped viruses. However, the potential use of CBAs specifically lectins was limited due to unfavorable responses like immunogenicity, mitogenicity, hemagglutination, inflammatory activity, cellular toxicity, etc. Here, we reviewed the current scenario of CBAs as antivirals against CoVs, presented strategies to improve the efficacy of CBAs against CoVs; and studied the molecular interactions between CBAs (lectins and PRM-A) with Man9 by molecular docking for potential repurposing against CoVs in general, and SARSCoV- 2, in particular.


2020 ◽  
Vol 16 (4) ◽  
pp. 454-486 ◽  
Author(s):  
Smita Verma ◽  
Vishnuvardh Ravichandiran ◽  
Nihar Ranjan ◽  
Swaran J.S. Flora

Nitrogen-containing heterocycles are one of the most common structural motifs in approximately 80% of the marketed drugs. Of these, benzimidazoles analogues are known to elicit a wide spectrum of pharmaceutical activities such as anticancer, antibacterial, antiparasitic, antiviral, antifungal as well as chemosensor effect. Based on the benzimidazole core fused heterocyclic compounds, crescent-shaped bisbenzimidazoles were developed which provided an early breakthrough in the sequence-specific DNA recognition. Over the years, a number of functional variations in the bisbenzimidazole core have led to the emergence of their unique properties and established them as versatile ligands against several classes of pathogens. The present review provides an overview of diverse pharmacological activities of the bisbenzimidazole analogues in the past decade with a brief account of its development through the years.


2021 ◽  
Vol 27 (S1) ◽  
pp. 3250-3250
Author(s):  
Viswanath Vittaladevaram ◽  
Kranthi Kuruti

AbstractThe key aspect for development of novel drug molecules is to perform structural determination of target molecule associated with its ligand. One such tool that provides insights towards structure of molecule is Cryo-electron microscopy which covers biological targets that are intractable. Examination of proteins can be carried out in native state, as the samples are frozen at -175 degree Celsius i.e. cryogenic temperatures. In addition to this, there were no limits for molecular and functional structures of proteins that can be imagined in 3-dimensional form. This includes ligands which unravel mechanisms that are biologically relevant. This will enable to better understand the mechanisms that are used for development of new therapeutics. Application of Cryo-electron microscopy is not limited to protein complexes and is considered as non-specific. Intervention of Cryo-EM would allow to analyse the structures and also able to dissect the interaction with therapeutic molecules. The study determines the usage of cryo-EM for providing resolutions that are acceptable for lead discovery. It also provides support for lead optimization and also for discovery of vaccines and therapeutics.


Sign in / Sign up

Export Citation Format

Share Document