In Vitro and In Vivo Approaches for Screening the Potential of Anti Cancer Agents: A Review

Author(s):  
Rakhi Mishra ◽  
Prem Shankar Mishra ◽  
Shruti Varshney ◽  
Rupa Mazumder ◽  
Avijit Mazumder

Background: Anticancer drug development is a tedious process, requiring several in vitro, in vivo, and clinical studies. To avoid chemical toxicity in animals during an experiment, it is necessary to envisage toxic doses of screened drugs in vivo at different concentrations. Several in vitro and in vivo studies have been reported to discover the management of cancer. Materials and Methods: This study has focused on bringing together a wide range of in vivo and in vitro assay methods, developed to evaluate each hallmark feature of cancer. Result: This review provides elaborated information about target-based and cell-based screening of new anticancer drugs in the molecular targeting period. This would help to incite an alteration from the preclinical screening of pragmatic compound-orientated to target-orientated drug selection. Conclusion: Selection methodologies for finding anticancer activity have importance for tumor-specific agents. In this study, advanced rationalization of the cell-based assay is explored along with broad applications of the cell-based methodologies considering other opportunities also.

Author(s):  
Roohi Mohi-ud-din ◽  
Reyaz Hassan Mir ◽  
Prince Ahad Mir ◽  
Saeema Farooq ◽  
Syed Naiem Raza ◽  
...  

Background: Genus Berberis (family Berberidaceae), which contains about 650 species and 17 genera worldwide, has been used in folklore and various traditional medicine systems. Berberis Linn. is the most established group among genera with around 450-500 species across the world. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations. Objective: The present review is focussed to summarize and collect the updated review of information of Genus Berberis species reported to date regarding their ethnomedicinal information, chemical constituents, traditional/folklore use, and reported pharmacological activities on more than 40 species of Berberis. Conclusion: A comprehensive survey of the literature reveals that various species of the genus possess various phytoconstituents mainly alkaloids, flavonoid based compounds isolated from different parts of a plant with a wide range of pharmacological activities. So far, many pharmacological activities like anti-cancer, anti-hyperlipidemic, hepatoprotective, immunomodulatory, anti-inflammatory both in vitro & in vivo and clinical study of different extracts/isolated compounds of different species of Berberis have been reported, proving their importance as a medicinal plant and claiming their traditional use.


2014 ◽  
Vol 42 (05) ◽  
pp. 1071-1098 ◽  
Author(s):  
Mao-Xing Li ◽  
Xi-Rui He ◽  
Rui Tao ◽  
Xinyuan Cao

In the present review, the literature data on the chemical constituents and biological investigations of the genus Pedicularis are summarized. Some species of Pedicularis have been widely applied in traditional Chinese medicine. A wide range of chemical components including iridoid glycosides, phenylpropanoid glycosides (PhGs), lignans glycosides, flavonoids, alkaloids and other compounds have been isolated and identified from the genus Pedicularis. In vitro and in vivo studies indicated some monomer compounds and extracts from the genus Pedicularis have been found to possess antitumor, hepatoprotective, anti-oxidative, antihaemolysis, antibacterial activity, fatigue relief of skeletal muscle, nootropic effect and other activities.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3797
Author(s):  
Marta Olech ◽  
Wojciech Ziemichód ◽  
Natalia Nowacka-Jechalke

This review focuses on the natural sources and pharmacological activity of tormentic acid (TA; 2α,3β,19α-trihydroxyurs-2-en-28-oic acid). The current knowledge of its occurrence in various plant species and families is summarized. Biological activity (e.g., anti-inflammatory, antidiabetic, antihyperlipidemic, hepatoprotective, cardioprotective, neuroprotective, anti-cancer, anti-osteoarthritic, antinociceptive, antioxidative, anti-melanogenic, cytotoxic, antimicrobial, and antiparasitic) confirmed in in vitro and in vivo studies is compiled and described. Biochemical mechanisms affected by TA are indicated. Moreover, issues related to the biotechnological methods of production, effective eluents, and TA derivatives are presented.


Author(s):  
Aloisio Cunha de Carvalho ◽  
Leoni Villano Bonamin

Background: Several reviews about phytotherapy and homeopathy have been published in the last years, including Viscum album (VA.L). VA is a parasite plant whose extract has anti-cancer proprieties and is used alone or in combination with conventional chemotherapy. Methods: We performed a systematic review about the in vivo and in vitro models described in the literature, including veterinary clinical trials. The literature was consulted from Pubmed database. Results: There are several kinds of pharmaceutical preparations about VA and their active principles used in experimental studies, lectin being frequently studied (alone or as an extract compound). More than 50% of available literature about VA is related to the lectin effects. On the other hand, the effects of viscotoxins are less studied. Among the in vivo experimental studies about VA and its compounds, the B16 murine melanoma is the most used model, followed by Ehrlich, Walker and Dalton tumors. The results point to the apoptotic effects, metastasis control and tumor regression. Some veterinary clinical studies about the use of VA in the treatment of sarcoid, fibrosarcoma and neuroblastoma are quoted in literature too, with interesting results. Considering the in vitro models, our review revealed that NALM6 leukemia cells, B16 melanoma and NC1-H460 lung carcinoma were the most studied tumor models, apoptosis signals being the most important findings. Only one study verified immunoglobulin and interleukin production. All consulted papers were related to phytotherapy preparations only. Conclusions: Although the literature about the anti-cancer activity of VA extract and its lectins is enough, there is a marked lack of information about viscotoxin activities and about the effects of homeopathic preparations of this plant on animal tumors and on in vitro cultivated tumor cells.


Biology ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 161
Author(s):  
Séverine André ◽  
Lionel Larbanoix ◽  
Sébastien Verteneuil ◽  
Dimitri Stanicki ◽  
Denis Nonclercq ◽  
...  

Blood-brain barrier (BBB) crossing and brain penetration are really challenging for the delivery of therapeutic agents and imaging probes. The development of new crossing strategies is needed, and a wide range of approaches (invasive or not) have been proposed so far. The receptor-mediated transcytosis is an attractive mechanism, allowing the non-invasive penetration of the BBB. Among available targets, the low-density lipoprotein (LDL) receptor (LDLR) shows favorable characteristics mainly because of the lysosome-bypassed pathway of LDL delivery to the brain, allowing an intact discharge of the carried ligand to the brain targets. The phage display technology was employed to identify a dodecapeptide targeted to the extracellular domain of LDLR (ED-LDLR). This peptide was able to bind the ED-LDLR in the presence of natural ligands and dissociated at acidic pH and in the absence of calcium, in a similar manner as the LDL. In vitro, our peptide was endocytosed by endothelial cells through the caveolae-dependent pathway, proper to the LDLR route in BBB, suggesting the prevention of its lysosomal degradation. The in vivo studies performed by magnetic resonance imaging and fluorescent lifetime imaging suggested the brain penetration of this ED-LDLR-targeted peptide.


Author(s):  
Matthew B. Fisher ◽  
Nicole Söegaard ◽  
David R. Steinberg ◽  
Robert L. Mauck

Given the limitations of current surgical approaches to treat articular cartilage injuries, tissue engineering (TE) approaches have been aggressively pursued over the past two decades. Although biochemical and biomechanical properties on the order of the native tissue have been achieved (1–5), several in-vitro and in-vivo studies indicate that increased tissue maturity may limit the ability of engineered constructs to remodel and integrate with surrounding cartilage, although results are highly variable (2, 6–8). Thus, “static” measures of construct maturity (e.g. compressive modulus) upon implantation may not be the best indicators of in-vivo success, which likely requires implanted TE constructs to mature, remodel, and integrate with the host over time to achieve optimal results. We recently introduced the concept of “trajectory-based” tissue engineering (TB-TE), which is based on the general hypothesis that time-dependent increases in construct maturation in-vitro prior to implantation (i.e. positive rates) may provide a better predictor of in-vivo success (9). As a first step in evaluating this concept, in the current study we hypothesized that time-dependent increases in equilibrium modulus (a metric of growth) would be correlated to ability of constructs to integrate to cartilage using an in-vitro assay. To test this hypothesis, the current objective was to determine and model the time course of maturation of TE constructs during in-vitro culture and to assess the ability of these constructs to integrate to cartilage at various points during their maturation.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1232
Author(s):  
Stefania D’Adamo ◽  
Silvia Cetrullo ◽  
Veronica Panichi ◽  
Erminia Mariani ◽  
Flavio Flamigni ◽  
...  

Osteoarthritis (OA) is a disease associated to age or conditions that precipitate aging of articular cartilage, a post-mitotic tissue that remains functional until the failure of major homeostatic mechanisms. OA severely impacts the national health system costs and patients’ quality of life because of pain and disability. It is a whole-joint disease sustained by inflammatory and oxidative signaling pathways and marked epigenetic changes responsible for catabolism of the cartilage extracellular matrix. OA usually progresses until its severity requires joint arthroplasty. To delay this progression and to improve symptoms, a wide range of naturally derived compounds have been proposed and are summarized in this review. Preclinical in vitro and in vivo studies have provided proof of principle that many of these nutraceuticals are able to exert pleiotropic and synergistic effects and effectively counteract OA pathogenesis by exerting both anti-inflammatory and antioxidant activities and by tuning major OA-related signaling pathways. The latter are the basis for the nutrigenomic role played by some of these compounds, given the marked changes in the transcriptome, miRNome, and methylome. Ongoing and future clinical trials will hopefully confirm the disease-modifying ability of these bioactive molecules in OA patients.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 596 ◽  
Author(s):  
María del Carmen Villegas-Aguilar ◽  
Álvaro Fernández-Ochoa ◽  
María de la Luz Cádiz-Gurrea ◽  
Sandra Pimentel-Moral ◽  
Jesús Lozano-Sánchez ◽  
...  

Dietary phenolic compounds are considered as bioactive compounds that have effects in different chronic disorders related to oxidative stress, inflammation process, or aging. These compounds, coming from a wide range of natural sources, have shown a pleiotropic behavior on key proteins that act as regulators. In this sense, this review aims to compile information on the effect exerted by the phenolic compounds and their metabolites on the main metabolic pathways involved in energy metabolism, inflammatory response, aging and their relationship with the biological properties reported in high prevalence chronic diseases. Numerous in vitro and in vivo studies have demonstrated their pleiotropic molecular mechanisms of action and these findings raise the possibility that phenolic compounds have a wide variety of roles in different targets.


2021 ◽  
Vol 12 (6) ◽  
pp. 52-59
Author(s):  
Rajeev Sati ◽  
Monika Bisht

Holmskioldia sanguinea Retz. is a Sub-Himalayan plant that has been cultivated in the Americas, Europe, Indo-china, Asia-Pacific, and Southern Africa. It has been used traditionally to treat rheumatism and rheumatoid arthritis, dysentery, headaches, hypertension, boils, blain, ulcers, and gynaecological problems, as well as a blood purifying concoction. The botanical description of the plant, its phytochemical constituents, and its pharmacological activities are discussed, with an emphasis on antibacterial, antihepatotoxic, antifungal, anti-inflammatory, antioxidant, antimicrobial, analgesic, central nervous system depressant, diuretic, oestrogenic, anti-implantation, and anticancer properties. Most pharmacological effects are a result of plant constituents such as alkaloids, terpenoids, tannins, flavonoids, glycosides and phenols, to name a few. Conventional wisdom should be confirmed through in vitro and in vivo studies, as well as clinical trials. Herb's anti-tumor and anti-cancer properties have generated significant interest.


Author(s):  
Vinicius Cruzat ◽  
Marcelo Macedo Rogero ◽  
Kevin Noel Keane ◽  
Rui Curi ◽  
Philip Newsholme

Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g. ill/critically ill, post-trauma, sepsis, exhausted athletes) it is currently difficult to determine whether glutamine parenteral or enteral supplementation should be recommended based on the amino acid plasma concentration (glutaminemia). Although the beneficial immune based effects of glutamine supplementation is already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review on how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism, action and important issues related to the effects of glutamine supplementation in catabolic situations.


Sign in / Sign up

Export Citation Format

Share Document