Proteomic Analysis of Differentially Expressed Proteins in Mycobacterium Tuberculosis- Infected Macrophages

2019 ◽  
Vol 17 ◽  
Author(s):  
Shuang Tian ◽  
Dongjun Yang ◽  
Qian Long ◽  
Min Ling

: Mycobacterium tuberculosis (MTB) and Mycobacterium avium (MA) belong to the intracellular parasitic bacteria. To better understand how MTB survives in macrophages and the different pathogenic mechanisms of MTB and MA, the tandem mass tag (TMT) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used for analysis of the differentially expressed proteins in MTB-infected macrophages and MA-infected macrophages. A total of 682 proteins were found to be differentially expressed in MTB-infected cells in comparison with MA-infected cells. Gene Ontology annotation revealed the involvement of 682 differentially expressed proteins in cellular components, biological processes and molecular functions including binding, catalytic activity, metabolic processes, cellular processes, cell part, cell proliferation and apoptosis, etc. Among these, 10 proteins (O60812, P06576, O43660-2, E9PL10, O00442, M0R050, Q9H8H0, Q9BSJ8, P41240 and Q8TD57-3) were down-regulated in MTB-infected cells. We found that M0R050, O00442, Q9H8H0, O60812 and O43660 are interactive proteins which participate in a multitude of cellular RNA processing, suggesting that these five down-regulated proteins might repress the synthesis of some resistant proteins in MTB-infected cells to promote MTB survival in macrophages.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Dongjun Yang ◽  
Xin Fu ◽  
Shiyi He ◽  
Xueping Ning ◽  
Min Ling

Mycobacterium avium (MA) belongs to the intracellular parasitic bacteria. To better understand how MA survives within macrophages and the different pathogenic mechanisms of MA and Mycobacterium tuberculosis (MTB), tandem mass tag (TMT) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis have been used to determine the proteins which are differentially expressed in MA-infected and MTB-infected macrophages. 369 proteins were found to be differentially expressed in MA-infected cells but not in MTB-infected cells. By using certain bioinformatics methods, we found the 369 proteins were involved in molecular function, biological process, and cellular component including binding, catalytic activity, metabolic process, cellular process, and cell part. In addition, some identified proteins were involved in multiple signaling pathways. These results suggest that MA probably survive within macrophages by affecting the expression of some crucial proteins.


2021 ◽  
Vol 14 ◽  
Author(s):  
Changci Tong ◽  
Peifang Cong ◽  
Ying Liu ◽  
Xiuyun Shi ◽  
Lin Shi ◽  
...  

Recurrent chest blast exposure can lead to brain inflammation, oxidative stress, and mental disorders in soldiers. However, the mechanism that underlies brain injury caused indirectly by chest blasts remains unclear. It is urgent to find additional reliable biomarkers to reveal the intimate details of the pathogenesis of this phenomenon. We used the term tandem mass tag (TMT) labeling combined with liquid chromatography–tandem mass spectrometry (LC-MS/MS) to screen for differentially expressed proteins in rat brain at different time points after a chest blast. Data are available via ProteomeXchange with the identifier PXD025204. Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), the Database for Annotation, Visualization and Integrated Discovery (DAVID), and Cytoscape analyses were used to analyze the proteomic profiles of blast-exposed rats. In addition, we performed Western blotting to verify protein levels. We identified 6,931 proteins, of which 255 were differentially expressed and 43, 84, 52, 97, and 49 were identified in brain tissues at 12, 24, 48, and 72 h and 1 week after chest blast exposure, respectively. In this study, the GO, KEGG, Clusters of Orthologous Groups of proteins, and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analyses indicated that brain damage caused by chest blast exposure involved many important biological processes and signaling pathways, such as inflammation, cell adhesion, phagocytosis, neuronal and synaptic damage, oxidative stress, and apoptosis. Furthermore, Western blotting confirmed that these differentially expressed proteins and affected signaling pathways were associated with brain damage caused by chest blast exposure. This study identifies potential protein biomarkers of brain damage caused indirectly by chest blast and new targets for the treatment of this condition.


Metabolites ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 166 ◽  
Author(s):  
Qianqian He ◽  
Xinmei Fang ◽  
Tianhui Zhu ◽  
Shan Han ◽  
Hanmingyue Zhu ◽  
...  

Bambusa pervariabilis McClure × Dendrocalamopsis grandis (Q.H.Dai & X.l.Tao ex Keng f.) Ohrnb. blight is a widespread and dangerous forest fungus disease, and has been listed as a supplementary object of forest phytosanitary measures. In order to study the control of B. pervariabilis × D. grandis blight, this experiment was carried out. In this work, a toxin purified from the pathogen Arthrinium phaeospermum (Corda) Elli, which causes blight in B. pervariabilis × D. grandis, with homologous heterogeneity, was used as an inducer to increase resistance to B. pervariabilis × D. grandis. A functional analysis of the differentially expressed proteins after induction using a tandem mass tag labeling technique was combined with mass spectrometry and liquid chromatography mass spectrometry in order to effectively screen for the proteins related to the resistance of B. pervariabilis × D. grandis to blight. After peptide labeling, a total of 3320 unique peptides and 1791 quantitative proteins were obtained by liquid chromatography mass spectrometry analysis. Annotation and enrichment analysis of these peptides and proteins using the Gene ontology and Kyoto Encyclopedia of Genes and Genomes databases with bioinformatics software show that the differentially expressed protein functional annotation items are mainly concentrated on biological processes and cell components. Several pathways that are prominent in the Kyoto Encyclopedia of Genes and Genomes annotation and enrichment include metabolic pathways, the citrate cycle, and phenylpropanoid biosynthesis. In the Protein-protein interaction networks four differentially expressed proteins-sucrose synthase, adenosine triphosphate-citrate synthase beta chain protein 1, peroxidase, and phenylalanine ammonia-lyase significantly interact with multiple proteins and significantly enrich metabolic pathways. To verify the results of tandem mass tag, the candidate proteins were further verified by parallel reaction monitoring, and the results were consistent with the tandem mass tag data analysis results. It is confirmed that the data obtained by tandem mass tag technology are reliable. Therefore, the differentially expressed proteins and signaling pathways discovered here is the primary concern for subsequent disease resistance studies.


Author(s):  
Sun X ◽  
◽  
Qu T ◽  
Yang X ◽  
He X ◽  
...  

Gestational Diabetes Mellitus (GDM) is one of the diseases occurring in pregnancy. Although normal postpartum glycometabolism can be restored in most patients with GDM, they have a significantly increased risk of developing complications in the future. In recent years, many studies on the screening of differentially expressed proteins have been performed in patients with GDM by means of proteomics, but the pathogenesis of GDM in the placenta was still unclear. Thus, using the Tandem Mass Tag (TMT) quantitative technology, we aimed to identify candidate biomarkers that could predict GDM occurrence early and provide targets for future therapy. Placenta samples were obtained from pregnant women immediately after delivery. Quantitative proteomics was performed using TMT isobaric tags and liquid chromatography-tandem mass spectrometry. Bioinformatic analysis was performed to elucidate the biological processes that these differentially expressed proteins were involved in. Thirtyfive differentially expressed proteins were identified between patients with GDM and normal pregnant women. Therein, 7 and 28 proteins were upregulated and downregulated, respectively. Differentially expressed proteins were mainly enriched in African trypanosomiasis pathway, hematopoietic cell lineage, gap junction, glucagon signaling pathway, and retinol metabolism. Insulin resistance induced by the excessively activated glucagon signaling pathway in the placenta may be one of the reasons for GDM onset. Among the 35 differentially expressed proteins, excluding 12 unknown proteins or antibodies, 17 of the remaining 23 proteins converged to the same protein-protein interaction network, indicating that a highly linked protein interaction network in the placenta of patients with GDM affected the occurrence of disease.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 607
Author(s):  
Nadeem Ullah ◽  
Ling Hao ◽  
Jo-Lewis Banga Ndzouboukou ◽  
Shiyun Chen ◽  
Yaqi Wu ◽  
...  

Rifampicin (RIF) is one of the most important first-line anti-tuberculosis (TB) drugs, and more than 90% of RIF-resistant (RR) Mycobacterium tuberculosis clinical isolates belong to multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. In order to identify specific candidate target proteins as diagnostic markers or drug targets, differential protein expression between drug-sensitive (DS) and drug-resistant (DR) strains remains to be investigated. In the present study, a label-free, quantitative proteomics technique was performed to compare the proteome of DS, RR, MDR, and XDR clinical strains. We found iniC, Rv2141c, folB, and Rv2561 were up-regulated in both RR and MDR strains, while fadE9, espB, espL, esxK, and Rv3175 were down-regulated in the three DR strains when compared to the DS strain. In addition, lprF, mce2R, mce2B, and Rv2627c were specifically expressed in the three DR strains, and 41 proteins were not detected in the DS strain. Functional category showed that these differentially expressed proteins were mainly involved in the cell wall and cell processes. When compared to the RR strain, Rv2272, smtB, lpqB, icd1, and folK were up-regulated, while esxK, PPE19, Rv1534, rpmI, ureA, tpx, mpt64, frr, Rv3678c, esxB, esxA, and espL were down-regulated in both MDR and XDR strains. Additionally, nrp, PPE3, mntH, Rv1188, Rv1473, nadB, PPE36, and sseA were specifically expressed in both MDR and XDR strains, whereas 292 proteins were not identified when compared to the RR strain. When compared between MDR and XDR strains, 52 proteins were up-regulated, while 45 proteins were down-regulated in the XDR strain. 316 proteins were especially expressed in the XDR strain, while 92 proteins were especially detected in the MDR strain. Protein interaction networks further revealed the mechanism of their involvement in virulence and drug resistance. Therefore, these differentially expressed proteins are of great significance for exploring effective control strategies of DR-TB.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1258
Author(s):  
Li Wang ◽  
Chen Liu ◽  
Yujie Liu ◽  
Ming Luo

Sphingolipids are essential biomolecules and membrane components, but their regulatory role in cotton fiber development is poorly understood. Here, we found that fumonisin B1 (FB1)—a sphingolipid synthesis inhibitor—could block fiber elongation severely. Using liquid chromatography tandem mass spectrometry (LC-MS/MS), we detected 95 sphingolipids that were altered by FB1 treatment; of these, 29 (mainly simple sphingolipids) were significantly increased, while 33 (mostly complex sphingolipids) were significantly decreased. A quantitative analysis of the global proteome, using an integrated quantitative approach with tandem mass tag (TMT) labeling and LC-MS/MS, indicated the upregulation of 633 and the downregulation of 672 proteins after FB1 treatment. Most differentially expressed proteins (DEPs) were involved in processes related to phenylpropanoid and flavonoid biosynthesis. In addition, up to 20 peroxidases (POD) were found to be upregulated, and POD activity was also increased by the inhibitor. To our knowledge, this is the first report on the effects of FB1 treatment on cotton fiber and ovule sphingolipidomics and proteomics. Our findings provide target metabolites and biological pathways for cotton fiber improvement.


2019 ◽  
Author(s):  
Shu Meng ◽  
Wenchao Xia ◽  
Meng Pan ◽  
Yangjie Jia ◽  
Zhanlong He ◽  
...  

Abstract Background: Aged rhesus monkeys exhibit deficits in memory mediated by the hippocampus. Although extensive research has been carried out on the characteristics of human hippocampal aging, there is still very little scientific understanding of the changes associated with hippocampal aging in rhesus monkeys. To explore the proteomics profiling and pathway-related changes in the rhesus hippocampus during the aging process, we conducted a high throughput quantitative proteomics analysis of hippocampal samples from two groups of rhesus macaques aged 6 years and 20 years, using 2-plex tandem mass tag (TMT) labeling. In addition, we used a comprehensive bioinformatics analysis approach to investigate the enriched signaling pathways of differentially expressed proteins (the ratios of 20-y vs. 6-y, ≥1.20 or ≤ 0.83). Results: In total, 3,260 proteins were identified with a high level of confidence in rhesus hippocampus. We found 367 differentially expressed proteins related to rhesus hippocampus aging. Based on biological pathway analysis, we found these aging-related proteins were predominantly enriched in the electron transport chain, NRF2 pathway, focal adhesion-PI3K-AKT-mTOR signaling pathway and cytoplasmic ribosome proteins. Data are available via ProteomeXchange with identifier PXD011398. Conclusion: This study provides a detail description of the proteomics profile related to rhesus hippocampal aging. These findings should make an important contribution to further mechanistic studies, marker selection and drug development for the prevention and treatment of aging or age-related neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document