Integrating the Universe of Effector and Regulatory Immune Cell Subsets: An Emerging Role of Protein-Glycan Interactions

2010 ◽  
Vol 6 (4) ◽  
pp. 348-356
Author(s):  
Susana A. Pesoa ◽  
Diego O. Croci ◽  
Gabriel A. Rabinovich
Open Biology ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 170006 ◽  
Author(s):  
B. Calì ◽  
B. Molon ◽  
A. Viola

Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers.


2016 ◽  
Vol 71 ◽  
pp. 53 ◽  
Author(s):  
Christina Boeck ◽  
Sabrina Krause ◽  
Alexander Karabatsiakis ◽  
Katharina Schury ◽  
Christiane Waller ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Andrea R. Menicucci ◽  
Krista Versteeg ◽  
Courtney Woolsey ◽  
Chad E. Mire ◽  
Joan B. Geisbert ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Anila Duni ◽  
Olga Balafa ◽  
George Vartholomatos ◽  
Margarita Oikonomou ◽  
Paraskevi Tseke ◽  
...  

Abstract Background and Aims Advanced chronic kidney disease (CKD) is characterized by elevated expression of the proinflammatory and pro-atherogenic CD14++CD16+ monocytes subset. The role of lymphocyte subpopulations including natural killer (NK) cells and CD4+CD25+ regulatory T cells (Tregs) in the modulation of inflammation and immunity and subsequent cardiovascular implications have received increasing attention. The role of immune cell subpopulations remains to be determined in peritoneal dialysis (PD) patients. The aim of this pilot study was to investigate potential correlations between blood levels of CD14++CD16+ monocytes, NK cells and Tregs with phenotypes of established cardiovascular disease (CVD), including coronary artery disease (CAD) and heart failure (HF) in a cohort of PD patients. Method 29 stable PD patients (mean age 66.96 years ±14.5, 62% males) were enrolled. Exclusion criteria were a history of malignancy, autoimmune disease, active or chronic infections and a recent (< 3 months) cardiovascular event. Demographic, laboratory and bioimpedance measurements data (overhydration, extracellular and total body water and their ratios) were collected. The analysis of peripheral blood immune cell subsets was performed using flow cytometry (FC). Additionally, in 7 PD patients the distribution of the immune cells was evaluated by FC at two time points: T0 (before initiation of PD - CKD stage G5) and T1 (after PD start). Results The median dialysis vintage was 34.5 (range 3.2-141) months. Overall, PD patients had 527 ± 199 monocytes and 1731 ± 489 lymphocytes while mean percentage of CD14++CD16+ monocytes was 9.3 ±6.36% (normal range 2-8%), NK cells 16.6±10.3% (normal range 5-15%) and Tregs 2.1±1.76% (normal range 1-3%). There was no correlation of either of these cell subpopulations with age, PD vintage, inflammation markers (CRP, fibrinogen, albumin, hsTroponin-I), overhydration markers or comorbidities. Only increased NK cells were associated with the presence of HF in PD (24.87 vs 14.92%, p 0.047). In multiple regression analysis, NK cells levels were strongly associated with the presence of edema (beta coef=13.7, p<0.001) and CAD (beta coef=7.1, p=0.046). At T0 mean percentage of CD14++CD16+ monocytes, NK cells and Tregs were 9.7 ±4.5%, 17.1 ±3.84% and 2.38± 1.26% respectively whereas at T1 mean percentage of CD14++CD16+ monocytes was 13.3% ±8.4, NK cells 19.8±6.47% and Tregs 1.5±0.6%. Paired t-test of cell subpopulations (T0 vs T1) showed that only the Tregs were significantly decreased (p =0.018), while the other subpopulations did not differ and remained increased. Conclusion Our study is the first to evaluate the potential association between specific immune cell subsets and cardiovascular disease in long-term PD patients. Increased NK cells levels directly correlate both with the presence of HF and CAD in PD patients. Longitudinal results suggest that CD14++CD16+ and NK cells remain increased after PD start, while Tregs decrease further. The state of pro-inflammation and immune deregulation appear to persist after initiating PD. Future research is required to evaluate the role of immune cells subsets as potential tools to identify patients who are at the highest risk for complications and to guide interventions that may improve clinical outcomes.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Sri Nagarjun Batchu ◽  
Angie Hughson ◽  
Janice Gerloff ◽  
Deborah J Fowell ◽  
Vyacheslav A Korshunov

Introduction: Gas6/Axl pathway contributes to elevation of blood pressure. Immune cells are implicated in initiation and maintenance of hypertension. In this study we aimed to investigate the role of Axl in immune cells on kidney injury and initiation of hypertension. Methods and Results: Deoxycorticosterone-acetate (DOCA; 75mg, 60days release) and salt hypertension was induced for 1wk or 6wks in four groups of Axl chimeras (n=4-5) that were generated by bone marrow (BM) transplant. Multi parameter flow cytometry was used to quantify five major immune cell subsets in digested kidneys from Axl chimeras. Systolic blood pressure (SBP) increased by 30mmHg in Axl+/+ →Axl+/+, Axl-/- →Axl-/- and Axl+/+ →Axl-/- mice after 1wk of DOCA-salt. However, chimeras that lack Axl in the BM cells (Axl-/- →Axl+/+) showed reduction in early increase in SBP (16+2mmHg). We observed a significant decrease in urine protein levels in Axl-/- →Axl+/+ (0.3+0.1μg/μl) compared to other Axl chimeras (∼0.7μg/μl) after 1wk of DOCA-salt. Kidney glomeruli areas were reduced in Axl-/- →Axl+/+ (4,143+229μm 2 ) compared to other Axl chimeras (∼6,000μm 2 ) after 6wks of DOCA-salt. Kidneys from Axl-/- →Axl-/- showed an increase in total leukocytes (8 vs. 4%), B cells (29 vs. 12%) and decrease in monocytes/macrophages (16 vs. 22%) and dendritic cells (5 vs. 10%) compared to Axl+/+ →Axl+/+. Moreover, Axl-/- →Axl+/+ showed further increase in leukocytes (17%), B (39%) and dendritic (13%) cells in kidneys compared to other Axl chimeras. In addition a small percentage of wild type T cells was increased in the kidneys from Axl-/- →Axl+/+ chimeras. Conclusions: These findings suggest that Axl expression in BM-derived cells is critical for kidney injury in DOCA-salt hypertension. Axl-dependent pathways regulate immune cell populations in the kidneys during initiation of hypertension. This study was supported by HL105623 grant (VAK)


Neuroforum ◽  
2019 ◽  
Vol 25 (3) ◽  
pp. 173-183 ◽  
Author(s):  
Daniel Berchtold ◽  
Luis Weitbrecht ◽  
Christian Meisel ◽  
Andreas Meisel

Abstract Stroke is one of the leading causes of mortality and morbidity worldwide. Upon cerebral ischemia, an inflammatory reaction takes place in the brain. Infiltration of different immune cell subsets as well as activation of resident microglia cells have been shown to have both beneficial and detrimental effects on stroke outcome. For a long time, research in the field of adaptive immunity after stroke has mostly focused on T lymphocytes and only recently, several publications shed light on the importance of B lymphocytes in the acute and chronic phases of ischemic stroke. In this review, we will focus on the role of B cells in the ischemic brain and describe possible antibody-dependent and antibody-independent mechanisms in the development of post-stroke cognitive deficits.


Author(s):  
Josephine Herz ◽  
Ivo Bendix ◽  
Ursula Felderhoff-Müser

Abstract Perinatal brain injury is the leading cause of neurological mortality and morbidity in childhood ranging from motor and cognitive impairment to behavioural and neuropsychiatric disorders. Various noxious stimuli, including perinatal inflammation, chronic and acute hypoxia, hyperoxia, stress and drug exposure contribute to the pathogenesis. Among a variety of pathological phenomena, the unique developing immune system plays an important role in the understanding of mechanisms of injury to the immature brain. Neuroinflammation following a perinatal insult largely contributes to evolution of damage to resident brain cells, but may also be beneficial for repair activities. The present review will focus on the role of peripheral immune cells and discuss processes involved in neuroinflammation under two frequent perinatal conditions, systemic infection/inflammation associated with encephalopathy of prematurity (EoP) and hypoxia/ischaemia in the context of neonatal encephalopathy (NE) and stroke at term. Different immune cell subsets in perinatal brain injury including their infiltration routes will be reviewed and critical aspects such as sex differences and maturational stage will be discussed. Interactions with existing regenerative therapies such as stem cells and also potentials to develop novel immunomodulatory targets are considered. Impact Comprehensive summary of current knowledge on the role of different immune cell subsets in perinatal brain injury including discussion of critical aspects to be considered for development of immunomodulatory therapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sivasankaran Munusamy Ponnan ◽  
K.K. Vidyavijayan ◽  
Kannan Thiruvengadam ◽  
Nancy Hilda J ◽  
Manikannan Mathayan ◽  
...  

CD4+ T cells are critical players in the host adaptive immune response. Emerging evidence suggests that certain CD4+ T cell subsets contribute significantly to the production of neutralizing antibodies and help in the control of virus replication. Circulating T follicular helper cells (Tfh) constitute a key T cell subset that triggers the adaptive immune response and stimulates the production of neutralizing antibodies (NAbs). T cells having stem cell-like property, called stem-like memory T cells (Tscm), constitute another important subset of T cells that play a critical role in slowing the rate of disease progression through the differentiation and expansion of different types of memory cell subsets. However, the role of these immune cell subsets in T cell homeostasis, CD4+ T cell proliferation, and progression of disease, particularly in HIV-2 infection, has not yet been elucidated. The present study involved a detailed evaluation of the different CD4+ T cell subsets in HIV-2 infected persons with a view to understanding the role of these immune cell subsets in the better control of virus replication and delayed disease progression that is characteristic of HIV-2 infection. We observed elevated levels of CD4+ Tfh and CD4+ Tscm cells along with memory and effector T cell abundance in HIV-2 infected individuals. We also found increased frequencies of CXCR5+ CD8+ T cells and CD8+ Tscm cells, as well as memory B cells that are responsible for NAb development in HIV-2 infected persons. Interestingly, we found that the frequency of memory CD4+ T cells as well as memory B cells correlated significantly with neutralizing antibody titers in HIV-2 infected persons. These observations point to a more robust CD4+ T cell response that supports B cell differentiation, antibody production, and CD8+ T cell development in HIV-2 infected persons and contributes to better control of the virus and slower rate of disease progression in these individuals.


2012 ◽  
Vol 42 (12) ◽  
pp. 3110-3115 ◽  
Author(s):  
Wolfgang W. Leitner ◽  
Adriana Costero-Saint Denis ◽  
Tonu Wali

2015 ◽  
Vol 308 (10) ◽  
pp. F1041-F1046 ◽  
Author(s):  
Marc Weidenbusch ◽  
Severin Rodler ◽  
Hans-Joachim Anders

Interleukins have become well-known regulators of innate and adaptive immunity-related tissue inflammation. Recently, IL-22 has gained a lot of interest for its unique functions in maintaining and regaining epithelial integrity. IL-22 is exclusively secreted by different immune cell subsets, while IL-22 receptors are mainly expressed by epithelial cells. As the kidney is largely an epithelial organ, the functional role of IL-22 in the kidney deserves to be explored in detail. Here, we briefly summarize the key features of IL-22 biology and review the available data on its expression and functional roles in kidney injury and kidney regeneration. Furthermore, we provide suggestions on how to explore this evolving field in the future.


Sign in / Sign up

Export Citation Format

Share Document