Role of Nano-Photocatalysts for Detoxification of Toxic Heavy Metal

2019 ◽  
Vol 16 ◽  
Author(s):  
M. Bilal Tahir ◽  
Abdullah M. Asiri ◽  
M. Faheem Malik ◽  
N. R. Khalid ◽  
T. Iqbal ◽  
...  

Background: Nano-photocatalysis through semiconductor-based materials has become an emerging and eye-catching approach for detoxification of hazardous heavy metals in the aqueous environment. Method: In this article, photocatalysis being a green technique along with several other detoxification technologies for toxic heavy metals have been reviewed. Toxic Effects: Further, the adverse effects of heavy metals on human health, agriculture lands, environment, and aquatic system were investigated. Toxic heavy-metals contribute to numerous environmental issues based on their toxicity. Result: Various types of photocatalysts were revised in recent literature for the detoxification of heavy metals. The recycling of photocatalysts may be anticipated as a worthy method for wastewater treatment has also been discussed with recent examples. Conclusion: Moreover, it concludes with efficiency, challenges and new future perspectives for heavy metal detoxification using photocatalysis.

Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Abate Ayele ◽  
Yakob Godebo Godeto

Heavy metals generated mainly through many anthropogenic processes, and some natural processes have been a great environmental challenge and continued to be the concern of many researchers and environmental scientists. This is mainly due to their highest toxicity even at a minimum concentration as they are nonbiodegradable and can persist in the aquatic and terrestrial environments for long periods. Chromium ions, especially hexavalent ions (Cr(VI)) generated through the different industrial process such as tanneries, metallurgical, petroleum, refractory, oil well drilling, electroplating, mining, textile, pulp and paper industries, are among toxic heavy metal ions, which pose toxic effects to human, plants, microorganisms, and aquatic lives. This review work is aimed at biosorption of hexavalent chromium (Cr(VI)) through microbial biomass, mainly bacteria, fungi, and microalgae, factors influencing the biosorption of chromium by microorganisms and the mechanism involved in the remediation process and the functional groups participated in the uptake of toxic Cr(VI) from contaminated environments by biosorbents. The biosorption process is relatively more advantageous over conventional remediation technique as it is rapid, economical, requires minimal preparatory steps, efficient, needs no toxic chemicals, and allows regeneration of biosorbent at the end of the process. Also, the presence of multiple functional groups in microbial cell surfaces and more active binding sites allow easy uptake and binding of a greater number of toxic heavy metal ions from polluted samples. This could be useful in creating new insights into the development and advancement of future technologies for future research on the bioremediation of toxic heavy metals at the industrial scale.


2012 ◽  
Vol 12 (1) ◽  
pp. 34 ◽  
Author(s):  
Reginawanti Hindersah ◽  
Dedeh Hudaya Arief ◽  
Soetijoso Soemitro ◽  
Lukman Gunarto

The contamination of toxic heavy metal Cadmium (Cd) in soils will be endanger the human health because it ismore available comparing to another toxic heavy metals. One method of Cd-contaminated soil bioremediation isusing exopolysachharide-producing bacteria Azotobacter. Exopolysachharides (EPS) can mobilize Cd through theformation of complex Cd-EPS which sequentially can increase the availability of Cd for plants uptake. A laboratoryexperiment has been done to study the EPS production and the viability of six Azotobacter isolates in the liquidculture containing 0.01, 0.1, and 1 mM CdCl2. The bacteria were cultured in liquid medium with and without CdCl2 for72 hours at room temperature. The EPS production was determined by gravimetric method after precipitationusing acetone and centrifugation at 7000 rpm. The result was that all of Azotobacter isolates produce EPS in thepresence of CdCl2. In the culture with 1 mM CdCl2, the density of Azotobacter sp. isolate BS3, LK5, LKM6 increasedsignificantly, and that of isolate LH16 decreased. No significant effect of CdCl2 on the density of isolate BS2 andLH15. This research suggested that some Azotobacter isolates were relatively resistence to the Cd and could bedeveloped as biological agents in Cd-contaminated soil bioremediation.


RSC Advances ◽  
2016 ◽  
Vol 6 (89) ◽  
pp. 86607-86616 ◽  
Author(s):  
Pradyot Koley ◽  
Makoto Sakurai ◽  
Toshiaki Takei ◽  
Masakazu Aono

Facilely fabricated silk protein sericin-mediated hierarchical hydroxyapatite hybrid architectures show excellent adsorption of toxic heavy metal ions of Pb(ii), Cd(ii) and Hg(ii) and a hazardous dye, Congo red (CR), from wastewater.


1984 ◽  
Vol 4 (3) ◽  
pp. 484-491
Author(s):  
D M Durnam ◽  
R D Palmiter

A mouse hepatocyte cell line selected for growth in 80 microM CdSO4 (Cdr80 cells) was used to test the role of metallothioneins in heavy metal detoxification. The cadmium-resistant (Cdr80) cells have double minute chromosomes carrying amplified copies of the metallothionein-I gene and accumulate ca. 20-fold more metallothionein-I mRNA than unselected cadmium-sensitive (Cds) cells after optimal Cd stimulation. As a consequence, the amount of Cd which inhibits DNA synthesis by 50% is ca. 7.5-fold higher in Cdr80 cells than in Cds cells. Cds and Cdr80 cells were compared in terms of their resistance to other heavy metals. The results indicate that although Zn, Cu, Hg, Ag, Co, Ni, and Bi induce metallothionein-I mRNA accumulation in both Cdr80 and Cds cells, the Cdr80 cells show increased resistance to only a subset of these metals (Zn, Cu, Hg, and Bi). This suggests that not all metals which induce metallothionein mRNA are detoxified by metallothionein and argues against autoregulation of metallothionein genes. Metallothionein-I mRNA is also induced by iodoacetate, suggesting that the regulatory molecule has sensitive sulfhydryl groups.


2018 ◽  
Vol 3 (1) ◽  
pp. 414-426
Author(s):  
A.O. Adekiya ◽  
A.P. Oloruntoba ◽  
S.O. Ojeniyi ◽  
B.S. Ewulo

Abstract The study investigated the level of heavy metal contamination in plants {maize (Zea mays) and tomato (Solanum lycopersicum L.)} from thirty soil samples of three locations (Epe, Igun and Ijana) in the Ilesha gold mining area, Osun State, Nigeria. Total concentrations of As, Cd, Co, Cr, Cu, Ni, Pb and Zn were determined using atomic absorption spectrophotometry. Spatial variations were observed for all metals across the locations which was adduced to pH and the clay contents of the soils of each location. The results showed that heavy metals are more concentrated in the areas that are closer to the mining site and the concentrations in soil and plants (maize and tomato) decreased with increasing perpendicular distance from the mining site, indicating that the gold mine was the main sources of pollution. The mean concentrations of heavy metals in plants (tomato and maize) samples were considered to be contaminated as As, Cd and Pb respectively ranged from 0.6 - 2.04 mg kg-1, 0.8 - 5.2 mg kg-1, 0.8 - 3.04 mg kg-1 for tomato and respectively 0.60 - 2.00 mg kg-1, 1.50 - 4.60 mg kg-1 and 0.90 - 2.50 mg kg-1 for maize. These levels exceeded the maximum permissible limits set by FAO/WHO for vegetables. In conclusion, monitoring of crops for toxic heavy metals is essential for food safety in Nigeria.


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Hawraz Sami Khalid ◽  
Hoshyar Saadi Ali ◽  
Dhary Almashhadany

The present study was conducted to evaluate the quality of drinking water in randomly selected schools in Erbil city, Kurdistan Region, Iraq. The water quality indices such as the Heavy metal Pollution Index (HPI) and Heavy metal Evaluation Index (HEI) were applied to characterize water quality. Eighteen schools were incorporated and sampled for their water storage tanks available to students. Water samples and sediment samples from tanks floor were analyzed by Inductively Coupled Plasma Optical Emission Spectrometer for the determination of twenty-two metal elements. In drinking water samples, all detected metals did not exceed the permissible limits of the World Health Organization. The results of this study showed that the average values of HPI and HEI for As, Cd, Cr, Cu, Fe, Pb, Mn, Ni, and Zn were 54.442 and 0.221, respectively. According to data of the water quality indices, the schools drinking water quality are good and suitable for drinking in terms of heavy metals. However, sediments samples contained high concentrations of all elements including the toxic heavy metals (As, Cd, Cr, and Pb). Re-suspension of sediments into water column after refilling storage tanks can pose a serious threat to students drinking water from such vessels. It is therefore recommended that proper storage tanks are provided to the schools accompanied by continuous sanitation and hygiene practice to mitigate the corrosion of tanks to avoid health risks of toxic metal


2021 ◽  
Author(s):  
Sunanda Kodikara ◽  
Hossein Tiemoory ◽  
Mangala Chathura De Silva ◽  
Pathmasiri Ranasinghe ◽  
Sudarshana Somasiri ◽  
...  

Abstract Heavy metal (HM) pollution has become a serious threat to coastal aquatic ecosystems. This study, therefore, aimed at assessing the spatial distribution of selected heavy metals/metalloids including Arsenic (As), Cadmium (Cd), Chromium (Cr), Lead (Pb), and Mercury (Hg) in surface sediment (0–15 cm) samples collected across Kalametiya Lagoon in southern Sri Lanka. Forty-one (41) grid points of the lagoon were sampled and the sediment samples were analyzed for HM content by using ICP-MS. A questionnaire survey was carried out to investigate the possible sources for HM pollution in Kalametiya Lagoon. Water pH and salinity showed significant variation across the lagoon. Overall mean value of pH and salinity were 6.68 ± 0.17 and 2.9 ± 2.2 PSU respectively. The spatial distribution of the heavy metals was not monotonic and showed a highly spatial variation. The kernel density maps of the measured heavy metals demarcated several different areas of the lagoon. The mean contents of As, Cd, Cr, Hg, and Pb were lower than that of threshold effect level (TEL) however, higher for Hg at the North Inlet. Nevertheless, it was still lower than potential effect level (PEL). Socio-economic interactions have dramatically reduced during the past two decades. Industrial sewage, river suspended sediments and agrochemicals such as fertilizers, pesticides were reportedly identified as the possible sources for heavy metal loads. Accumulation of toxic heavy metals can be minimized by detouring the water inflow to the lagoon.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2659
Author(s):  
Muhammad Zaim Anaqi Zaimee ◽  
Mohd Sani Sarjadi ◽  
Md Lutfor Rahman

Natural occurrence and anthropogenic practices contribute to the release of pollutants, specifically heavy metals, in water over the years. Therefore, this leads to a demand of proper water treatment to minimize the harmful effects of the toxic heavy metals in water, so that a supply of clean water can be distributed into the environment or household. This review highlights several water treatment methods that can be used in removing heavy metal from water. Among various treatment methods, the adsorption process is considered as one of the highly effective treatments of heavy metals and the functionalization of adsorbents can fully enhance the adsorption process. Therefore, four classes of adsorbent sources are highlighted: polymeric, natural mineral, industrial by-product, and carbon nanomaterial adsorbent. The major purpose of this review is to gather up-to-date information on research and development on various adsorbents in the treatment of heavy metal from water by emphasizing the adsorption capability, effect of pH, isotherm and kinetic model, removal efficiency and the contact of time of every adsorbent.


2019 ◽  
Vol 70 (17) ◽  
pp. 4477-4488 ◽  
Author(s):  
Laura C Terrón-Camero ◽  
M Ángeles Peláez-Vico ◽  
Coral Del-Val ◽  
Luisa M Sandalio ◽  
María C Romero-Puertas

Abstract Anthropogenic activities, such as industrial processes, mining, and agriculture, lead to an increase in heavy metal concentrations in soil, water, and air. Given their stability in the environment, heavy metals are difficult to eliminate and can constitute a human health risk by entering the food chain through uptake by crop plants. An excess of heavy metals is toxic for plants, which have various mechanisms to prevent their accumulation. However, once metals enter the plant, oxidative damage sometimes occurs, which can lead to plant death. Initial production of nitric oxide (NO), which may play a role in plant perception, signalling, and stress acclimation, has been shown to protect against heavy metals. Very little is known about NO-dependent mechanisms downstream from signalling pathways in plant responses to heavy metal stress. In this review, using bioinformatic techniques, we analyse studies of the involvement of NO in plant responses to heavy metal stress, its possible role as a cytoprotective molecule, and its relationship with reactive oxygen species. Some conclusions are drawn and future research perspectives are outlined to further elucidate the signalling mechanisms underlying the role of NO in plant responses to heavy metal stress.


Sign in / Sign up

Export Citation Format

Share Document