The Use of Therapeutic Nanoparticulate Systems for Treating Atopic Dermatitis

2017 ◽  
Vol 14 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Yin-Ku Lin ◽  
Wei-Ling Chou ◽  
Pei-Wen Wang ◽  
Shih-Chun Yang ◽  
Jia-You Fang

Background: Atopic dermatitis (AD) is a chronic inflammatory skin disorder involving defects in epidermal barrier function and abnormal immune response to environmental stimuli. Standard treatment of AD involves topical application of emollients and anti-inflammatory drugs such as corticosteroids. Objective: Because of the barrier function defects in AD skin, the topical drug delivery can lead to systemic drug absorption, thereby eliciting systemic complications. Nanoparticles as the carriers used for cutaneous drug delivery provide some benefits over conventional formulations, including enhanced stability, improved epithelium permeability and bioavailability, controlled drug release, skin targeting, and minimal side effects. In recent years, the concept of using nanocarriers as vehicles for drug delivery to manage AD has attracted increasing attention. Polymeric nanoparticles, lipid nanoparticles, and liposomes are the most extensively studied nanocarriers for the treatment of AD. In this review, we highlight the recent progress on the development of nanosystems for AD treatment. Method: We systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for AD treatment. Different AD animal models for evaluating the efficacy of the therapeutic nanoparticles are described herein. Results: The discrepancy of the nanoparticle skin absorption between healthy skin and AD skin is also discussed. Conclusion: This review aimed to summarize the evidence for the therapeutic advantages of nanoparticles over the conventional AD therapy.

Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 895 ◽  
Author(s):  
György Babos ◽  
Emese Biró ◽  
Mónika Meiczinger ◽  
Tivadar Feczkó

Combinatorial drug delivery is a way of advanced cancer treatment that at present represents a challenge for researchers. Here, we report the efficient entrapment of two clinically used single-agent drugs, doxorubicin and sorafenib, against hepatocellular carcinoma. Biocompatible and biodegradable polymeric nanoparticles provide a promising approach for controlled drug release. In this study, doxorubicin and sorafenib with completely different chemical characteristics were simultaneously entrapped by the same polymeric carrier, namely poly(d,l-lactide-co-glycolide) (PLGA) and polyethylene glycol-poly(d,l-lactide-co-glycolide) (PEG-PLGA), respectively, using the double emulsion solvent evaporation method. The typical mean diameters of the nanopharmaceuticals were 142 and 177 nm, respectively. The PLGA and PEG-PLGA polymers encapsulated doxorubicin with efficiencies of 52% and 69%, respectively, while these values for sorafenib were 55% and 88%, respectively. Sustained drug delivery under biorelevant conditions was found for doxorubicin, while sorafenib was released quickly from the PLGA-doxorubicin-sorafenib and PEG-PLGA-doxorubicin-sorafenib nanotherapeutics.


Author(s):  
Harshal A. Pardeshi ◽  
Makarand S Gambhire ◽  
Kishore N. Gujar ◽  
Aniket A Vaidhya

Beta-cyclodextrin nanosponges (NS) based hydrogel had been studied as a topical delivery of ketoconazole (KTZ) for effective eradication of cutaneous fungal infection. The purpose of the present study was to develop KTZ loaded NS for topical drug delivery with skin targeting to minimizing the adverse side effects and providing a controlled release. The four types of NS were synthesized by varying the molar ratios of β-cyclodextrin (β-CD) to diphenylcarbonate (DPC) as a cross linker viz. 1:2, 1:4, 1:6, and 1:8. The KTZ loaded NS shows particle size 274.6-367 nm and high loading efficacy was obtained, FTIR, DSC, XRD studies confirmed the complexation of KTZ with NS. Hydrogel were evaluated comparatively with commercial product with respect to physicochemical properties, ex-vivo skin permeation and skin retention on human cadaver skin and antifungal activity. Ex-vivo study of KTZ-NS hydrogel exhibited controlled drug release up to 8 hrs whereas skin retention studies show avoidance of the systemic uptake and better accumulative uptake of the drug compared to marketed formulation. The zone of inhibition of KTZ-NS hydrogel was higher in comparison with commercial formulation against Candida albicans. These results indicate that the KTZ-NS is having controlled drug release, potential of skin targeting with enhanced antifungal activity.


2020 ◽  
Vol 13 (11) ◽  
pp. 411
Author(s):  
Irene Magnifico ◽  
Giulio Petronio Petronio ◽  
Noemi Venditti ◽  
Marco Alfio Cutuli ◽  
Laura Pietrangelo ◽  
...  

Atopic dermatitis (AD) is a pathological skin condition with complex aetiological mechanisms that are difficult to fully understand. Scientific evidence suggests that of all the causes, the impairment of the skin barrier and cutaneous dysbiosis together with immunological dysfunction can be considered as the two main factors involved in this pathological skin condition. The loss of the skin barrier function is often linked to dysbiosis and immunological dysfunction, with an imbalance in the ratio between the pathogen Staphylococcus aureus and/or other microorganisms residing in the skin. The bibliographic research was conducted on PubMed, using the following keywords: ‘atopic dermatitis’, ‘bacterial therapy’, ‘drug delivery system’ and ‘alternative therapy’. The main studies concerning microbial therapy, such as the use of bacteria and/or part thereof with microbiota transplantation, and drug delivery systems to recover skin barrier function have been summarized. The studies examined show great potential in the development of effective therapeutic strategies for AD and AD-like symptoms. Despite this promise, however, future investigative efforts should focus both on the replication of some of these studies on a larger scale, with clinical and demographic characteristics that reflect the general AD population, and on the process of standardisation, in order to produce reliable data.


2021 ◽  
Vol 57 (4) ◽  
pp. 155-165
Author(s):  
Loredana Himiniuc ◽  
Maricel Agop ◽  
Vlad Ghizdovat ◽  
Maria-Alexandra Paun ◽  
Vladimir-Alexandru Paun ◽  
...  

Controlled drug release is a promising pathway of biomedicine, meant to suppress side effects with the aim of increasing patient s comfort. A route to achieve this goal represents the encapsulation of drugs into matrixes, capable to develop physical forces, which further can control the drugs release. To this purpose, mathematical modeling is an important tool, which offers the possibility to understand the drug release mechanisms and to further design new performant systems. In this paper, a theoretical model for drug release from an amphiphilic matrix is presented. This is achieved using a conservation multifractal law of probability density followed by validation of the model. Moreover, because non-steroidal anti-inflammatory drugs (NSAIDs), such as diclofenac, are widely used in endometriosis as painkillers for dysmenorrhea management or Asherman syndrome for reducing the endometrial inflammation, some implications of our model for drug delivery systems applied in the field of gynecology have been discussed.


2019 ◽  
Vol 25 (37) ◽  
pp. 3917-3926
Author(s):  
Sajjad Molavipordanjani ◽  
Seyed Jalal Hosseinimehr

Combination of nanotechnology, biochemistry, chemistry and biotechnology provides the opportunity to design unique nanoparticles for tumor targeting, drug delivery, medical imaging and biosensing. Nanoparticles conjugated with biomolecules such as antibodies, peptides, vitamins and aptamer can resolve current challenges including low accumulation, internalization and retention at the target site in cancer diagnosis and therapy through active targeting. In this review, we focus on different strategies for conjugation of biomolecules to nanoparticles such as inorganic nanoparticles (iron oxide, gold, silica and carbon nanoparticles), liposomes, lipid and polymeric nanoparticles and their application in tumor targeting.


2020 ◽  
Vol 21 (9) ◽  
pp. 649-660
Author(s):  
Subashini Raman ◽  
Syed Mahmood ◽  
Ayah R. Hilles ◽  
Md Noushad Javed ◽  
Motia Azmana ◽  
...  

Background: Blood-brain barrier (BBB) plays a most hindering role in drug delivery to the brain. Recent research comes out with the nanoparticles approach, is continuously working towards improving the delivery to the brain. Currently, polymeric nanoparticle is extensively involved in many therapies for spatial and temporal targeted areas delivery. Methods: We did a non-systematic review, and the literature was searched in Google, Science Direct and PubMed. An overview is provided for the formulation of polymeric nanoparticles using different methods, effect of surface modification on the nanoparticle properties with types of polymeric nanoparticles and preparation methods. An account of different nanomedicine employed with therapeutic agent to cross the BBB alone with biodistribution of the drugs. Results: We found that various types of polymeric nanoparticle systems are available and they prosper in delivering the therapeutic amount of the drug to the targeted area. The effect of physicochemical properties on nanoformulation includes change in their size, shape, elasticity, surface charge and hydrophobicity. Surface modification of polymers or nanocarriers is also vital in the formulation of nanoparticles to enhance targeting efficiency to the brain. Conclusion: More standardized methods for the preparation of nanoparticles and to assess the relationship of surface modification on drug delivery. While the preparation and its output like drug loading, particle size, and charge, permeation is always conflicted, so it requires more attention for the acceptance of nanoparticles for brain delivery.


Sign in / Sign up

Export Citation Format

Share Document