Exploring phytochemicals from Himalayan medicinal plants as novel therapeutic agents

Author(s):  
Nidhi Saini ◽  
Viney Lather ◽  
Suresh Kumar Gahlawat

: Over-prescription of medicines leads to some crucial health issues like resistance, non-specificity, etc. Therefore, a human consumes various natural foods, therapeutics, and nutritional supplements to combat this problem. Various therapeutic properties of secondary metabolites such as anticancer, anti-inflammatory, and antibacterial properties are important in drug discovery and medicinal application. These natural products has replaced synthetic materials, resulting in a great deal of sustainability, rational use and preservation of biodiversity. This review described the potential therapeutic applications of secondary plant metabolites found in Himalayan Indian plants. The database contains 45 plants to treat various diseases such as cancer, inflammation, and microbial infections. Besides authorized ITIS names, it includes Hindi names, family names, and active constituents. The most important information about the molecules can be found in the hyperlinks for the active constituents. It includes structures (two-dimensional and three-dimensional), names and identifiers, chemical and physical properties, spectral information, biochemistry, literature and patents. The review also references various phytochemicals responsible for preventing COVID-19. Despite several challenges in manufacturing natural products, researchers may conduct research to produce successful medicines with few side effects.

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 772 ◽  
Author(s):  
Juan Román ◽  
Dorian González ◽  
Mario Inostroza-Ponta ◽  
Andrea Mahn

Glucosinolates are secondary plant metabolites of Brassicaceae. They exert their effect after enzymatic hydrolysis to yield aglycones, which become nitriles and epithionitriles through the action of epithiospecifier (ESP) and nitrile-specifier proteins (NSP). The mechanism of action of broccoli ESP and NSP is poorly understood mainly because ESP and NSP structures have not been completely characterized and because aglycones are unstable, thus hindering experimental measurements. The aim of this work was to investigate the interaction of broccoli ESP and NSP with the aglycones derived from broccoli glucosinolates using molecular simulations. The three-dimensional structure of broccoli ESP was built based on its amino-acid sequence, and the NSP structure was constructed based on a consensus amino-acid sequence. The models obtained using Iterative Threading ASSEmbly Refinement (I-TASSER) were refined with the OPLS-AA/L all atom force field of GROMACS 5.0.7 and were validated by Veryfy3D and ERRAT. The structures were selected based on molecular dynamics simulations. Interactions between the proteins and aglycones were simulated with Autodock Vina at different pH. It was concluded that pH determines the stability of the complexes and that the aglycone derived from glucoraphanin has the highest affinity to both ESP and NSP. This agrees with the fact that glucoraphanin is the most abundant glucosinolate in broccoli florets.


Author(s):  
Charles Oluwaseun Adetunji ◽  
Santwana Palai ◽  
Chika Precious Ekwuabu ◽  
Chukwuebuka Egbuna ◽  
Juliana Bunmi Adetunji ◽  
...  

Synthesis ◽  
2021 ◽  
Author(s):  
Michael P. Badart ◽  
Bill C. Hawkins

AbstractThe spirocyclic motif is abundant in natural products and provides an ideal three-dimensional template to interact with biological targets. With significant attention historically expended on the synthesis of flat-heterocyclic compound libraries, methods to access the less-explored three-dimensional medicinal-chemical space will continue to increase in demand. Herein, we highlight by reaction class the common strategies used to construct the spirocyclic centres embedded in a series of well-studied natural products.1 Introduction2 Cycloadditions3 Palladium-Catalysed Coupling Reactions4 Conjugate Additions5 Imines, Aminals, and Hemiaminal Ethers6 Mannich-Type Reactions7 Oxidative Dearomatisation8 Alkylation9 Organometallic Additions10 Conclusions


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 353
Author(s):  
Yanting Han ◽  
Qianqian Wei ◽  
Pengbo Chang ◽  
Kehui Hu ◽  
Oseweuba Valentine Okoro ◽  
...  

Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.


2020 ◽  
Vol 2 (1) ◽  
pp. 18
Author(s):  
Sara Ferraris ◽  
Enrica Verné ◽  
Gissur Örlygsson ◽  
Paulo Tambasco ◽  
Felipe Perraro Sehn ◽  
...  

Biomolecules and extracts from natural products are gaining increasing interest due to their beneficial properties for human health, low toxicity, environmental compatibility and sustainability. In this work, keratin, chitosan and peppermint essential oil have been used for the preparation of coatings on titanium substrates for biomedical implants/devices. All these coatings were obtained from local natural products/byproducts: keratin from discarded wool, chitosan from shrimp shells and peppermint essential oils from a local production. The above cited molecules were selected for their ability to stimulate soft tissue adhesion (keratin), anti-inflammatory activity (chitosan) and antibacterial activity (keratin after metal ion doping, chitosan and mint oil). The coatings were characterized by means of SEM-EDS, FTIR, zeta potential, wettability, tape and scratch tests, and cell and bacteria cultures. The coatings were successfully obtained for all the considered natural substances with good adhesion to the titanium substrates. All the coatings are chemically stable in water and the continuous coatings are mechanically resistant and protective for the metallic substrates. The keratin coatings are hydrophilic while the mint oil and chitosan coatings are hydrophobic; nanofibers, instead of continuous coatings, behave as more hydrophobic. At the physiological pH, the keratin and mint oil coatings are negatively charged when in contact with an aqueous environment, while the chitosan ones are positively charged. The oriented keratin fibers are able to drive fibroblast alignment. The Ag-doped keratin fibers and mint coating show antibacterial properties.


2017 ◽  
Vol 15 (1) ◽  
pp. 332-343 ◽  
Author(s):  
Karolina A. Wojtunik-Kulesza ◽  
Katarzyna Targowska-Duda ◽  
Katarzyna Klimek ◽  
Grażyna Ginalska ◽  
Krzysztof Jóźwiak ◽  
...  

AbstractAlzheimer’s disease (AD) is by far the most prevalent of all known forms of dementia. Despite wide-spread research, the main causes of emergence and development of AD have not been fully recognized. Natural, low-molecular, lipophilic terpenoids constitute an interesting group of secondary plant metabolites, that exert biological activities of possible use in the prevention and treatment of AD. In order to identify secondary metabolites possessing both antioxidant activity and the potential to increase the level of acetylcholine, selected terpenoids have been screened for possible acetylcholinesterase inhibitory activity by use of two methods, namely Marston (chromatographic assay) and Ellman (spectrophotometric assay). In order to describe the interaction between terpenes and AChE active gorge, molecular docking simulations were performed. Additionally, all analyzed terpenes were also evaluated for their cytotoxic properties against two normal cell lines using MTT assay. The obtained results show that: carvone (6), pulegone (8) and γ-terpinene (7) possess desirable AChE inhibitory activity. MTT assay revealed low or lack of cytotoxicity of these metabolites. Thus, among the investigated terpenes, carvone (6), pulegone (8) and y-terpinene (7) can be recognized as compounds with most promising activities in the development of multi-target directed ligands.


2013 ◽  
Vol 795 ◽  
pp. 692-696 ◽  
Author(s):  
Nida Iqbal ◽  
Mohammed Rafiq Abdul Kadir ◽  
Nasrul Humaimi Bin Mahmood ◽  
Micheal Moses ◽  
Mashitah Binti Mad Salim ◽  
...  

Antibacterial materials based on calcium phosphates have wide range of biomedical applications in the prevention of microbial infections. The synthesis of inorganic mineral component of bone i.e. hydroxyapatite was done with the addition of silver (Ag) (5-15 wt %) as antibacterial agent. The wet precipitation synthesis was carried out using diammonium hydrogen phosphate and calcium nitrate as P and Ca precursors. The presence and effect of silver addition on the structure was studied using Fourier Transform-Infrared (FTIR) spectroscopy and Energy Dispersive X-ray (EDX) techniques. The antibacterial properties of all samples were evaluated using Disc Diffusion Technique (DDT) againstS. aureus,B. subtilis, P. aeruginosaandE. coli. Antibacterial activities of samples were found to vary depending on the bacterial species and Ag loading percentage. The antibacterial assay suggested that the addition of Ag ions within hydroxyapatite can be effectively provided the required level of antibacterial activity against bacteria.


Author(s):  
Federico Cesarani ◽  
Maria Cristina Martina ◽  
Valter Capussotto ◽  
Andrea Giuliano ◽  
Renato Grilletto ◽  
...  

Facial reconstruction of mummies and corpses is important in anthropological, medical and forensic studies. The purpose of our study was to evaluate the role of three- Dimensional Multidetector CT examination for 3D facial reconstruction. We present a multidisciplinary work performed by radiologists, anthropologists and forensic police in reconstructing the possible physiognomy of an ancient Egyptian mummy. Three-Dimensional data were obtained from a well-preserved completely wrapped Egyptian mummy from the collection of the Egyptian Museum in Torino, Italy, dated from XXII or XXIII dynasty (945-715 BC). Data were used as a model for the rapid prototyping stereolithographic technique, a method which allows the creation of 3D model with digital data using synthetic materials such as resin or nylon.


Author(s):  
Parastou Farshi ◽  
Eda Ceren Kaya ◽  
Fataneh Hashempour-Baltork ◽  
Kianoush Khosravi-Darani

: Coronaviruses have caused worldwide outbreaks in different periods. SARS (severe acute respiratory syndrome), was the first emerged virus from this family, followed by MERS (Middle East respiratory syndrome) and SARS-CoV-2 (2019-nCoV or COVID 19), which is newly emerged. Many studies have been conducted on the application of chemical and natural drugs for treating these coronaviruses and they are mostly focused on inhibiting the proteases of viruses or blocking their protein receptors through binding to amino acid residues. Among many substances which are introduced to have an inhibitory effect against coronaviruses through the mentioned pathways, natural components are of specific interest. Secondary and primary metabolites from plants, are considered as potential drugs to have an inhibitory effect on coronaviruses. IC50 value (the concentration in which there is 50% loss in enzyme activity), molecular docking score and binding energy are parameters to understand the ability of metabolites to inhibit the specific virus. In this study we did a review of 154 papers on the effect of plant metabolites on different coronaviruses and data of their IC50 values, molecular docking scores and inhibition percentages are collected in tables. Secondary plant metabolites such as polyphenol, alkaloids, terpenoids, organosulfur compounds, saponins and saikosaponins, lectins, essential oil, and nicotianamine, and primary metabolites such as vitamins are included in this study.


Sign in / Sign up

Export Citation Format

Share Document