Evaluation of type II toxin-antitoxin systems, antibiotic resistance profiles, and biofilm quorum sensing genes in Acinetobacter baumannii isolates in Iraq

Author(s):  
Mohammed F. Al Marjania ◽  
Ebrahim Kouhsari ◽  
Fatima S. Ali ◽  
Sawsan H. Authman

Background: Bacterial Toxin-Antitoxin (TAs) systems are extensive two-component elements in the bacterial genome, which involved in many key biological functions including growth arrest, survival, biofilm formation, plasmid maintenance, defense against phages, persistence and virulence. Aim: This study aimed to assess the molecular determinants involved in TAs, biofilm quorum sensing, and antibiotic resistance profiles in Acinetobacter baumannii isolated from Baghdad`s hospitals in Iraq. Methods: A total of 127 A. baumannii isolates were collected from 2160 different clinical samples. The antimicrobial susceptibility test was performed using disk diffusion test. All isolates were characterized for molecular determinants involved in TAs and biofilm formation using the well-known PCR-based sequencing assay. Results: A high multi-drug resistant (MDR) (96.06%; 122/127 ) and imipenem resistance (84.25%; 107/127 ) rates were observed from A.baumannii isolates. Results showed the presence of rhlIR gene in three isolates (2.36%), and lasIR gene appeared in two isolates (1.57%) isolates, whilst, mazEF, ccdAB, and relBE genes have not detected among isolates. Conclusion: A high MDR and imipenem resistance rates within a low prevalence of rhlIR, and lasIR genes could be found in clinical A. baumannii isolates from some of Iraqi hospitals.

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 833
Author(s):  
Camila Pimentel ◽  
Casin Le ◽  
Marisel R. Tuttobene ◽  
Tomas Subils ◽  
Krisztina M. Papp-Wallace ◽  
...  

Acinetobacter baumannii has become a serious threat to human health due to its extreme antibiotic resistance, environmental persistence, and capacity to survive within the host. Two A. baumannii strains, A118 and AB5075, commonly used as model systems, and three carbapenem-resistant strains, which are becoming ever more dangerous due to the multiple drugs they can resist, were exposed to 3.5% human serum albumin (HSA) and human serum (HS) to evaluate their response with respect to antimicrobial resistance, biofilm formation, and quorum sensing, all features responsible for increasing survival and persistence in the environment and human body. Expression levels of antibiotic resistance genes were modified differently when examined in different strains. The cmlA gene was upregulated or downregulated in conditions of exposure to 3.5% HSA or HS depending on the strain. Expression levels of pbp1 and pbp3 tended to be increased by the presence of HSA and HS, but the effect was not seen in all strains. A. baumannii A118 growing in the presence of HS did not experience increased expression of these genes. Aminoglycoside-modifying enzymes were also expressed at higher or lower levels in the presence of HSA or HS. Still, the response was not uniform; in some cases, expression was enhanced, and in other cases, it was tapered. While A. baumannii AB5075 became more susceptible to rifampicin in the presence of 3.5% HSA or HS, strain A118 did not show any changes. Expression of arr2, a gene involved in resistance to rifampicin present in A. baumannii AMA16, was expressed at higher levels when HS was present in the culture medium. HSA and HS reduced biofilm formation and production of N-Acyl Homoserine Lactone, a compound intimately associated with quorum sensing. In conclusion, HSA, the main component of HS, stimulates a variety of adaptative responses in infecting A. baumannii strains.


10.3823/846 ◽  
2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Abdelraouf A Elmanama ◽  
Suhaila Al-Sheboul ◽  
Renad I Abu-Dan

Abstract Pseudomonas aeruginosa threatens patient’s care. It is considered as the most complicated health care associated pathogen to be eliminated from infection site. The biofilm forming ability of P. aeruginosa, being a major virulence factor for most pathogenic microorganism, protects it from host immunity and contribute to antibiotic resistance of this organism. It is estimated that about 80% of infectious diseases are due to biofilm mode of growth. Biofilm forming ability of bacteria imparts antimicrobial resistance that leads to many persistent and chronic bacterial infections. The world is becoming increasingly under the threat of entering the “post-antibiotic era”, an era in which the rate of death from bacterial infections is higher than from cancer. This review focus on P. aeruginosa biofilm forming ability; definition, developmental stages, and significance. In addition, the quorum sensing and the antibiotic resistance of this pathogen is discussed. Keywords: Biofilm; bacterial adhesion; Pseudomonas aeruginosa; antimicrobial resistance; quorum sensing.


2021 ◽  
Author(s):  
Saida Benomar ◽  
Gisela Di Venanzio ◽  
Mario F. Feldman

Acinetobacter baumannii is emerging as a multidrug-resistant (MDR) nosocomial pathogen of increasing threat to human health worldwide. The recent MDR urinary isolate UPAB1 carries the plasmid pAB5, a member of a family of large conjugative plasmids (LCP). LCP encode several antibiotic resistance genes and repress the type VI secretion system (T6SS) to enable their dissemination, employing two TetR transcriptional regulators. Furthermore, pAB5 controls the expression of additional chromosomally encoded genes, impacting UPAB1 virulence. Here we show that a pAB5-encoded H-NS transcriptional regulator represses the synthesis of the exopolysaccharide PNAG and the expression of a previously uncharacterized three-gene cluster that encodes a protein belonging to the CsgG/HfaB family. Members of this protein family are involved in amyloid or polysaccharide formation in other species. Deletion of the CsgG homolog abrogated PNAG production and CUP pili formation, resulting in a subsequent reduction in biofilm formation. Although this gene cluster is widely distributed in Gram-negative bacteria, it remains largely uninvestigated. Our results illustrate the complex cross-talks that take place between plasmids and the chromosomes of their bacterial host, which in this case can contribute to the pathogenesis of Acinetobacter . IMPORTANCE The opportunistic human pathogen Acinetobacter baumannii displays the highest reported rates of multidrug resistance among Gram-negative pathogens. Many A. baumannii strains carry large conjugative plasmids like pAB5. In recent years, we have witnessed an increase in knowledge about the regulatory cross-talks between plasmids and bacterial chromosomes. Here we show that pAB5 controls the composition of the bacterial extracellular matrix, resulting in a drastic reduction in biofilm formation. The association between biofilm formation, virulence, and antibiotic resistance is well-documented. Therefore, understanding the factors involved in the regulation of biofilm formation in Acinetobacter has remarkable therapeutic potential.


Author(s):  
Somaye Delfani ◽  
Faranak Rezaei ◽  
Setareh Soroush ◽  
Pegah Shakib

Background: Methicillin-resistant coagulase-negative staphylococci is responsible for hospital and community-acquired infections. Objective: This study aimed to investigate the antibiotic-resistance patterns, antibiotic-resistance genes, namely, ermA, ermB, ermC, blaZ, msrA, tetK, tetM, mup, and vanA, biofilm formation, and prevalence of different SCCmec types among the Staphylococcus cohniistrains isolated from clinical samples in Tehran, Iran. Methods: In this study,S. cohniiisolates were screened from the clinical samples from March 2012 to February 2013 in Tehran, Iran.Antimicrobial susceptibility test and inducible clindamycin resistance were evaluated by disc diffusion method, andresistance genes were examined using Polymerase Chain Reaction (PCR) assays. Then, biofilm formation assay was analyzed by Microtiter-plate test to detect the icaA and icaDgenes. The SCCmec and the Arginine Catabolite Mobile Element (ACME) typing were performed using the PCRmethod. Results: FromtwentyS. cohnii, all isolates were resistant to cefoxitin. 95% of the S. cohnii was defined as multidrug resistance (MDR)strains. The ermB, ermC, and vanA genes were not detected in any isolates; however, the blaZ gene had the highest frequency.95% of the S. cohnii isolates produced biofilm. Also, 4 SCCmec types, including V, IV, III+ (C2), VIII+ (AB1), were identified. Therefore, the majority of SCCmec were untypable. Based on the ACME typing, arcA and opp3 genes were positive in 13 (65%) and 1 (5%) isolates, respectively. Conclusion: Due to the high antimicrobial resistance and the spread of untypableSCCmecamong the isolates studied, the control and treatment of methicillin-resistantS. cohnii in hospitals and public health centers is a significant concern.


2019 ◽  
Vol 14 (7) ◽  
pp. 609-622 ◽  
Author(s):  
Kamelia Osman ◽  
Ahmed Orabi ◽  
Ayman Elbehiry ◽  
Mai H Hanafy ◽  
Amr M Ali

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Udomluk Leungtongkam ◽  
Rapee Thummeepak ◽  
Thawatchai Kitti ◽  
Kannipa Tasanapak ◽  
Jintana Wongwigkarn ◽  
...  

Abstract In this study, we examined the association between antimicrobial resistance, CRISPR/Cas systems and virulence with phage susceptibility in Acinetobacter baumannii and investigated draft genomes of phage susceptible multidrug resistant A. baumannii strains from Thailand. We investigated 230 A. baumannii strains using 17 lytic A. baumannii phages and the phage susceptibility was 46.5% (107/230). Phage susceptibility was also associated with resistance to numerous antibiotics (p-value < 0.05). We also found association between biofilm formation and the presence of ompA gene among phage susceptible A. baumannii strains (p-value < 0.05). A. baumannii isolates carrying cas5 or combinations of two or three other cas genes, showed a significant increase in phage resistance. Whole-genome sequences of seven phage susceptible A. baumannii isolates revealed that six groups of antibiotic resistance genes were carried by all seven phage susceptible A. baumannii. All strains carried biofilm associated genes and two strains harbored complete prophages, acquired copper tolerance genes, and CRISPR-associated (cas) genes. In conclusion, our data exhibits an association between virulence determinants and biofilm formation among phage susceptible A. baumannii strains. These data help to understand the bacterial co-evolution with phages.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ramanathan Srinivasan ◽  
Kannan Rama Devi ◽  
Sivasubramanian Santhakumari ◽  
Arunachalam Kannappan ◽  
Xiaomeng Chen ◽  
...  

It is now well known that the quorum sensing (QS) mechanism coordinates the production of several virulence factors and biofilm formation in most pathogenic microorganisms. Aeromonas hydrophila is a prime pathogen responsible for frequent outbreaks in aquaculture settings. Recent studies have also continuously reported that A. hydrophila regulates virulence factor production and biofilm formation through the QS system. In addition to the presence of antibiotic resistance genes, biofilm-mediated antibiotic resistance increases the severity of A. hydrophila infections. To control the bacterial pathogenesis and subsequent infections, targeting the QS mechanism has become one of the best alternative methods. Though very few compounds were identified as QS inhibitors against A. hydrophila, to date, the screening and identification of new and effective natural QS inhibitors is a dire necessity to control the infectious A. hydrophila. The present study endorses naringin (NA) as an anti-QS and anti-infective agent against A. hydrophila. Initially, the NA showed a concentration-dependent biofilm reduction against A. hydrophila. Furthermore, the results of microscopic analyses and quantitative virulence assays displayed the promise of NA as a potential anti-QS agent. Subsequently, the downregulation of ahh1, aerA, lip and ahyB validate the interference of NA in virulence gene expression. Furthermore, the in vivo assays were carried out in zebrafish model system to evaluate the anti-infective potential of NA. The outcome of the immersion challenge assay showed that the recovery rate of the zebrafish has substantially increased upon treatment with NA. Furthermore, the quantification of the bacterial load upon NA treatment showed a decreased level of bacterial counts in zebrafish when compared to the untreated control. Moreover, the NA treatment averts the pathogen-induced histoarchitecture damages in vital organs of zebrafish, compared to their respective controls. The current study has thus analyzed the anti-QS and anti-infective capabilities of NA and could be employed to formulate effective treatment measures against A. hydrophila infections.


2018 ◽  
Vol 84 (14) ◽  
Author(s):  
Karen L. Visick ◽  
Kelsey M. Hodge-Hanson ◽  
Alice H. Tischler ◽  
Allison K. Bennett ◽  
Vincent Mastrodomenico

ABSTRACT Vibrio fischeri is used as a model for a number of processes, including symbiosis, quorum sensing, bioluminescence, and biofilm formation. Many of these studies depend on generating deletion mutants and complementing them. Engineering such strains, however, is a time-consuming, multistep process that relies on cloning and subcloning. Here, we describe a set of tools that can be used to rapidly engineer deletions and insertions in the V. fischeri chromosome without cloning. We developed a uniform approach for generating deletions using PCR splicing by overlap extension (SOEing) with antibiotic cassettes flanked by standardized linker sequences. PCR SOEing of the cassettes to sequences up- and downstream of the target gene generates a DNA product that can be directly introduced by natural transformation. Selection for the introduced antibiotic resistance marker yields the deletion of interest in a single step. Because these cassettes also contain FRT (FLP recognition target) sequences flanking the resistance marker, Flp recombinase can be used to generate an unmarked, in-frame deletion. We developed a similar methodology and tools for the rapid insertion of specific genes at a benign site in the chromosome for purposes such as complementation. Finally, we generated derivatives of these tools to facilitate different applications, such as inducible gene expression and assessing protein production. We demonstrated the utility of these tools by deleting and inserting genes known or predicted to be involved in motility. While developed for V. fischeri strain ES114, we anticipate that these tools can be adapted for use in other V. fischeri strains and, potentially, other microbes. IMPORTANCE Vibrio fischeri is a model organism for studying a variety of important processes, including symbiosis, biofilm formation, and quorum sensing. To facilitate investigation of these biological mechanisms, we developed approaches for rapidly generating deletions and insertions and demonstrated their utility using two genes of interest. The ease, consistency, and speed of the engineering is facilitated by a set of antibiotic resistance cassettes with common linker sequences that can be amplified by PCR with universal primers and fused to adjacent sequences using splicing by overlap extension and then introduced directly into V. fischeri , eliminating the need for cloning and plasmid conjugation. The antibiotic cassettes are flanked by FRT sequences, permitting their removal using Flp recombinase. We augmented these basic tools with a family of constructs for different applications. We anticipate that these tools will greatly accelerate mechanistic studies of biological processes in V. fischeri and potentially other Vibrio species.


Sign in / Sign up

Export Citation Format

Share Document