A Review on Possible Therapeutic Effect of Nigella sativa and Thymoquinone in Neurodegenerative Diseases

2018 ◽  
Vol 17 (6) ◽  
pp. 412-420 ◽  
Author(s):  
Saeed Samarghandian ◽  
Tahereh Farkhondeh ◽  
Fariborz Samini

Background & Objective: Medicinal plants have attracted great attention in the recent years and is increasingly applied instead of the chemical drugs. Several documents showed that herbal medicine traditionally and clinically applied in the cure and prevention of several diseases. In the recent years, different medicinal plants and their main components have been chosen in neurological therapy. The less toxic effects, availability, and lower price of medicinal plants versus synthetic substances make them as excellent and simple selection in the treatment of nervous diseases. Nigella sativa (N. Sativa) L. (Ranunculaceae), well recognized as black cumin, has been utilized as a medicinal plant that has a strong traditional background. Thymoquinone (TQ) is one of the main active components of the volatile oil of N. sativa seeds and most effects and actions of N. Sativa are mainly related to TQ. The several pharmacological properties of N. sativa and TQ have been found, for example; anti-tumor, anti-microbial, anti-histaminic, immunomodulatory, anti-inflammatory, and anti-oxidant effects. Many reviews have investigated this valuable plant and its components, but none of them focused on their neuroprotective effects. Therefore, the aim of the present review was to show comprehensive and neuropharmacological properties of N. sativa and TQ. In this review, various studies on scientific databases regarding the effects of N. sativa and TQ in neurological diseases have been introduced. Studies on the neuroprotective effects of N. sativa and TQ which were published between1979 and 2018, were searched using various databases. The results of these studies showed that N. sativa and TQ have the protective effects against neurodegenerative diseases, including; Alzheimer, depression, encephalomyelitis, epilepsy, ischemia, Parkinson, and traumatic brain injury have been discussed in the cell lines and experimental animal models. Although there are many studies indicating the beneficial actions of this plant in the nervous system, the number of research projects relating to the human reports is rare. Conclusion: Therefore, better designed clinical trials in humans are needed to confirm these effects.

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 226
Author(s):  
Juveriya Farooq ◽  
Rokeya Sultana ◽  
Tahreen Taj ◽  
Syed Mohammed Basheeruddin Asdaq ◽  
Abdulkhaliq J. Alsalman ◽  
...  

The drugs used to treat cancer not only kill fast-growing cancer cells, but also kill or slow the growth of healthy cells, causing systemic toxicities that lead to altered functioning of normal cells. Most chemotherapeutic agents have serious toxicities associated with their use, necessitating extreme caution and attention. There is a growing interest in herbal remedies because of their pharmacological activities, minimal side effects, and low cost. Thymoquinone, a major component of the volatile oil of Nigella sativa Linn, also known as black cumin or black seeds, is commonly used in Middle Eastern countries as a condiment. It is also utilized for medicinal purposes and possesses antidiabetic, anti-cancer, anti-inflammatory, hepatoprotective, anti-microbial, immunomodulatory, and antioxidant properties. This review attempts to compile the published literature demonstrating thymoquinone’s protective effect against chemotherapeutic drug-induced toxicities.


Dose-Response ◽  
2018 ◽  
Vol 16 (2) ◽  
pp. 155932581876145 ◽  
Author(s):  
Tahereh Farkhondeh ◽  
Saeed Samarghandian ◽  
Ali Mohammad Pourbagher Shahri ◽  
Fariborz Samini

Thymoquinone (TQ), one of the main components active of Nigella sativa, exhibited very useful biomedical effects such as anti-inflammatory, antioxidant, antimicrobial, antiparasitic, anticancer, hypoglycemic, antihypertensive, and antiasthmatic effects. There are several studies about pharmacological activities of TQ but its neuroprotection effects are not fully described. The literature search has indicated many studies pertaining to the effects of TQ in neurological problems such as epilepsy, parkinsonism, anxiety, and improvement of learning and memory, and so on. In addition, TQ protected brain cells from various injuries due to its antioxidant, anti-inflammatory, and apoptotic effects in cell line and experimental animal models. The present study has been designed to review the scientific literature about the pharmacological activities of TQ to the neurological diseases. This study purposed that although experimental studies indicated the beneficial effects of TQ against nervous system problems, better designed clinical trials in humans are needed to confirm these effects.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1784
Author(s):  
Md. Abdul Hannan ◽  
Md. Ataur Rahman ◽  
Abdullah Al Mamun Sohag ◽  
Md. Jamal Uddin ◽  
Raju Dash ◽  
...  

Mounting evidence support the potential benefits of functional foods or nutraceuticals for human health and diseases. Black cumin (Nigella sativa L.), a highly valued nutraceutical herb with a wide array of health benefits, has attracted growing interest from health-conscious individuals, the scientific community, and pharmaceutical industries. The pleiotropic pharmacological effects of black cumin, and its main bioactive component thymoquinone (TQ), have been manifested by their ability to attenuate oxidative stress and inflammation, and to promote immunity, cell survival, and energy metabolism, which underlie diverse health benefits, including protection against metabolic, cardiovascular, digestive, hepatic, renal, respiratory, reproductive, and neurological disorders, cancer, and so on. Furthermore, black cumin acts as an antidote, mitigating various toxicities and drug-induced side effects. Despite significant advances in pharmacological benefits, this miracle herb and its active components are still far from their clinical application. This review begins with highlighting the research trends in black cumin and revisiting phytochemical profiles. Subsequently, pharmacological attributes and health benefits of black cumin and TQ are critically reviewed. We overview molecular pharmacology to gain insight into the underlying mechanism of health benefits. Issues related to pharmacokinetic herb–drug interactions, drug delivery, and safety are also addressed. Identifying knowledge gaps, our current effort will direct future research to advance potential applications of black cumin and TQ in health and diseases.


2021 ◽  
Vol 22 (16) ◽  
pp. 9078
Author(s):  
Md. Abdul Hannan ◽  
Md. Sarwar Zahan ◽  
Partha Protim Sarker ◽  
Akhi Moni ◽  
Hunjoo Ha ◽  
...  

The prevalence of chronic kidney disease (CKD) is increasing worldwide, and a close association between acute kidney injury (AKI) and CKD has recently been identified. Black cumin (Nigella sativa) has been shown to be effective in treating various kidney diseases. Accumulating evidence shows that black cumin and its vital compound, thymoquinone (TQ), can protect against kidney injury caused by various xenobiotics, namely chemotherapeutic agents, heavy metals, pesticides, and other environmental chemicals. Black cumin can also protect the kidneys from ischemic shock. The mechanisms underlying the kidney protective potential of black cumin and TQ include antioxidation, anti-inflammation, anti-apoptosis, and antifibrosis which are manifested in their regulatory role in the antioxidant defense system, NF-κB signaling, caspase pathways, and TGF-β signaling. In clinical trials, black seed oil was shown to normalize blood and urine parameters and improve disease outcomes in advanced CKD patients. While black cumin and its products have shown promising kidney protective effects, information on nanoparticle-guided targeted delivery into kidney is still lacking. Moreover, the clinical evidence on this natural product is not sufficient to recommend it to CKD patients. This review provides insightful information on the pharmacological benefits of black cumin and TQ against kidney damage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Md. Shahazul Islam ◽  
Cristina Quispe ◽  
Rajib Hossain ◽  
Muhammad Torequl Islam ◽  
Ahmed Al-Harrasi ◽  
...  

Quercetin (QUR) is a natural bioactive flavonoid that has been lately very studied for its beneficial properties in many pathologies. Its neuroprotective effects have been demonstrated in many in vitro studies, as well as in vivo animal experiments and human trials. QUR protects the organism against neurotoxic chemicals and also can prevent the evolution and development of neuronal injury and neurodegeneration. The present work aimed to summarize the literature about the neuroprotective effect of QUR using known database sources. Besides, this review focuses on the assessment of the potential utilization of QUR as a complementary or alternative medicine for preventing and treating neurodegenerative diseases. An up-to-date search was conducted in PubMed, Science Direct and Google Scholar for published work dealing with the neuroprotective effects of QUR against neurotoxic chemicals or in neuronal injury, and in the treatment of neurodegenerative diseases. Findings suggest that QUR possess neuropharmacological protective effects in neurodegenerative brain disorders such as Alzheimer’s disease, Amyloid β peptide, Parkinson’s disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. In summary, this review emphasizes the neuroprotective effects of QUR and its advantages in being used in complementary medicine for the prevention and treatment o of different neurodegenerative diseases.


2020 ◽  
Vol 18 (4) ◽  
pp. 346-357 ◽  
Author(s):  
Wen Yang ◽  
Siu-Po Ip ◽  
Ling Liu ◽  
Yan-Fang Xian ◽  
Zhi-Xiu Lin

Background: Uncaria rhynchophylla (Miq.) Jacks (Rubinaceae), a common herbal medicine known as Gou-teng in Chinese, is commonly used in Chinese medicine practice for the treatment of convulsions, hypertension, epilepsy, eclampsia and other cerebral diseases. The major active components of U. rhynchophylla are alkaloids, terpenoids and flavonoids. The protective effects of U. rhynchophylla and its major components on central nervous system (CNS) have become a focus of research in recent decades. Objective: The study aimed to systematically summarize the pharmacological activities of U. rhynchophylla and its major components on the CNS. Method: This review summarized the experimental findings from our laboratories, together with other literature data obtained through a comprehensive search of databases including the Pubmed and the Web of Science. Results: U. rhynchophylla and its major components such as rhynchophylline and isorhynchophylline have been shown to have neuroprotective effects on Alzheimer’s disease, Parkinson’s disease, depression, cerebral ischaemia through a number of mechanisms including anti-oxidant, anti-inflammatory actions and regulation on neurotransmitters. Conclusion: U. rhynchophylla and its major components have multiple beneficial pharmacological effects on CNS. Further studies on U. rhynchophylla and its major components are warranted to fully illustrate the underlying molecular mechanisms, pharmacokinetics, and toxicological profiles of these naturally occurring compounds and their potential for clinical application.


2010 ◽  
Vol 56 (3) ◽  
pp. 721-730 ◽  
Author(s):  
F. Isik ◽  
Tugba Tunali Akbay ◽  
A. Yarat ◽  
Z. Genc ◽  
R. Pisiriciler ◽  
...  

2012 ◽  
Vol 3 (3) ◽  
Author(s):  
Charles Mobbs ◽  
Cesar Moreno ◽  
Esther Kim ◽  
Nydia Ekasumara ◽  
Bridget Marcellino

AbstractAlthough the pathophysiology of neurodegenerative diseases is distinct for each disease, considerable evidence suggests that a single manipulation, dietary restriction, is strikingly protective against a wide range of such diseases. Thus pharmacological mimetics of dietary restrictions could prove widely protective across a range of neurodegenerative diseases. The PPAR transcription complex functions to re-program gene expression in response to nutritional deprivation as well as in response to a wide variety of lipophilic compounds. In mammals there are three PPAR homologs, which dimerize with RXR homologs and recruit coactivators Pgc1-alpha and Creb-binding protein (Cbp). PPARs are currently of clinical interest mainly because PPAR activators are approved for use in humans to reduce lipidemia and to improve glucose control in Type 2 diabetic patients. However, pharmacological enhancement of the activity of the PPAR complex is neuroprotective across a wide variety of models for neuropathological processes, including stroke, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. Conversely activity of the PPAR transcriptional complex is reduced in a variety of neuropathological processes. The main mechanisms mediating the neuroprotective effects of the PPAR transcription complex appear to be re-routing metabolism away from glucose metabolism and toward alternative subtrates, and reduction in inflammatory processes. Recent evidence suggests that the PPAR transcriptional complex may also mediate protective effects of dietary restriction on neuropathological processes. Thus this complex represents one of the most promising for the development of pharmacological treatment of neurodegenerative diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jianjian Dong ◽  
Xiaoming Zhang ◽  
Shijing Wang ◽  
Chenchen Xu ◽  
Manli Gao ◽  
...  

Studies have indicated that oxidative stress plays a crucial role in the development of Parkinson’s disease (PD) and other neurodegenerative conditions. Research has also revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) triggers the expression of antioxidant genes via a series of antioxidant response elements (AREs), thus preventing oxidative stress. Thymoquinone (TQ) is the bioactive component of Nigella sativa, a medicinal plant that exhibits antioxidant and neuroprotective effects. In the present study we examined whether TQ alleviates in vivo and in vitro neurodegeneration induced by 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by acting as an activator of the Nrf2/ARE cascade. We showed that TQ significantly reduced MPP+-mediated cell death and apoptosis. Moreover, TQ significantly elevated the nuclear translocation of Nrf2 and significantly increased the subsequent expression of antioxidative genes such as Heme oxygenase 1 (HO-1), quinone oxidoreductase (NQO1) and Glutathione-S-Transferase (GST). The application of siRNA to silence Nrf2 led to an abolishment in the protective effects of TQ. We also found that the intraperitoneal injection of TQ into a rodent model of PD ameliorated oxidative stress and effectively mitigated nigrostriatal dopaminergic degeneration by activating the Nrf2-ARE pathway. However, these effects were inhibited by the injection of a lentivirus wrapped Nrf2 siRNA (siNrf2). Collectively, these findings suggest that TQ alleviates progressive dopaminergic neuropathology by activating the Nrf2/ARE signaling cascade and by attenuating oxidative stress, thus demonstrating that TQ is a potential novel drug candidate for the treatment of PD.


Sign in / Sign up

Export Citation Format

Share Document