Medicinal Plant Compounds for Combating the Multi-drug Resistant Pathogenic Bacteria: A Review

2019 ◽  
Vol 20 (3) ◽  
pp. 183-196 ◽  
Author(s):  
Mulugeta Mulat ◽  
Archana Pandita ◽  
Fazlurrahman Khan

Background: Globally, people utilize plants as the main source of remedy to heal various ailments. Medicinal plants have been utilized to treat ailments since the invention of modern scientific systems of medicine. The common remedy of infectious diseases mainly depends on the inhibition capacity of compounds or killing potential. The issue may give a clue for the development of a novel antimicrobial agent. Methods: Currently, microorganisms which are resistant towards antibiotics are probably a matter of serious concern for the overall well-being of health. At the moment, new therapeutic targets aside from the microorganism wall-based activities are in progress. For instance, the autoinducer molecules produced by the quorum sensing system are used to control antibiotic resistance and biofilm formation. Results: This therapeutic target is well-studied worldwide, however, the scientific data are not updated and only current studies started to gain insight into its perspective as a target to struggle against infectious diseases. Microbial resistance against antimicrobial compounds is a topic of serious concern in recent time. Conclusion: Hence, this paper aims to confer a current overview of the novel compounds, quorum sensing, quorum quenching, biofilm formation in the development of antibiotic resistance and an update on their importance as a potential target for natural substances.

2022 ◽  
Author(s):  
Lateefat Modupe Habeeb ◽  
Opasola Afolabi Olaniyi ◽  
Adiama Babatunde Yusu ◽  
Ibrahim Azaman ◽  
Morufu O Raimi

Antibiotics, which are commonly used to treat human illnesses, are also used in animals for therapy, prophylaxis, and growth promotion. Sub-therapeutic antibiotic doses have typically been utilized for the last-mentioned purpose, which has contributed to resistance development. According to scientific data, certain antibiotic applications in food-producing animals can result in antibiotic resistance in intestinal bacteria, which can then be passed to the general population, causing treatment-resistant sickness. These antibiotic applications can also result in antibiotic resistance in non-pathogenic bacteria, whose resistance genes can be passed to disease-causing bacteria, resulting in antibiotic-resistant illnesses in people. Thus, this study assessed the antibiotics residues in raw meat sold in 6 slaughter houses in Kaduna State. The study is a descriptive cross-sectional study involving 6 slaughter houses in Central market Kaduna. Muscle, Kidney and liver samples were collected from each slaughterhouse. The antibiotic residues in the meat samples were analyzed using high performance liquid chromatography (HPLC) for tetracycline, ciprofloxacin and oxytetracycline residue results were presented in charts and tables. 18 different samples of beef (6 Muscles, 6 Liver and 6 Kidney) collected from abattoirs and meat vendors, the results shown that all beefs use three or more antimicrobial drugs. This research result revealed that 4(67%) tetracycline (oxytetracycline)were detected in meat samples at higher concentration), Oxytetraxycline (352.88, 221.58) of muscles is higher than (332.2, 217.05 of Liver and (263.33, 153.98) of Kidney is lower to muscles and liver. The Concentration of oxytetracycline were highest in muscles in samples 2. 3 and 6 which is above the WHO maximum residual limit. The concentration of streptomycin in the muscle, liver and kidney were detected (182.78, 56.23), (169.2, 58.39), (155.1, 50.20) but were within WHO Maximum residual limit. These high level of oxytetracycline residues in greater proportion of muscle samples destined for human consumption beyond MRLs could be as a result of the abuse of veterinary drugs as commonly practiced among livestock producers and vendors without observing withdrawal period prior to slaughter. The high-contamination rate of beef meat in the study areas is likely that consumers experience a high risk of exposure to drug residues.


2020 ◽  
Vol 21 (4) ◽  
pp. 270-286 ◽  
Author(s):  
Fazlurrahman Khan ◽  
Dung T.N. Pham ◽  
Sandra F. Oloketuyi ◽  
Young-Mog Kim

Background: The establishment of a biofilm by most pathogenic bacteria has been known as one of the resistance mechanisms against antibiotics. A biofilm is a structural component where the bacterial community adheres to the biotic or abiotic surfaces by the help of Extracellular Polymeric Substances (EPS) produced by bacterial cells. The biofilm matrix possesses the ability to resist several adverse environmental factors, including the effect of antibiotics. Therefore, the resistance of bacterial biofilm-forming cells could be increased up to 1000 times than the planktonic cells, hence requiring a significantly high concentration of antibiotics for treatment. Methods: Up to the present, several methodologies employing antibiotics as an anti-biofilm, antivirulence or quorum quenching agent have been developed for biofilm inhibition and eradication of a pre-formed mature biofilm. Results: Among the anti-biofilm strategies being tested, the sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors. The combinatorial strategies include (1) combination of multiple antibiotics, (2) combination of antibiotics with non-antibiotic agents and (3) loading of antibiotics onto a carrier. Conclusion: The present review paper describes the role of several antibiotics as biofilm inhibitors and also the alternative strategies adopted for applications in eradicating and inhibiting the formation of biofilm by pathogenic bacteria.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Olivia Nathalia ◽  
Diana Elizabeth Waturangi

Abstract Objective The objective of this research were to screen quorum quenching activity compound from phyllosphere bacteria as well as antibiofilm activity against several fish pathogen bacteria such as Aeromonas hydrophila, Streptococcus agalactiae, and Vibrio harveyi. Results We found eight phyllosphere bacteria isolates with potential quorum quenching activity to inhibit Chromobacterium violaceum as indicator bacteria. Crude extracts (20 mg/mL) showed various antibiofilm activity against fish pathogenic bacteria used in this study. Isolate JB 17B showed the highest activity to inhibit biofilm formation of A. hydrophila and V. harveyi, meanwhile isolate JB 3B showed the highest activity to inhibit biofilm of S. agalactiae. From destruction assay, isolate JB 8F showed the highest activity to disrupt biofilm of A. hydrophila isolate JB 20B showed the highest activity to disrupt biofilm of V. harveyi, isolate JB 17B also showed the highest activity to disrupt biofilm of S. agalactiae.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1620
Author(s):  
Victor Markus ◽  
Karina Golberg ◽  
Kerem Teralı ◽  
Nazmi Ozer ◽  
Esti Kramarsky-Winter ◽  
...  

Quorum sensing (QS), a sophisticated system of bacterial communication that depends on population density, is employed by many pathogenic bacteria to regulate virulence. In view of the current reality of antibiotic resistance, it is expected that interfering with QS can address bacterial pathogenicity without stimulating the incidence of resistance. Thus, harnessing QS inhibitors has been considered a promising approach to overriding bacterial infections and combating antibiotic resistance that has become a major threat to public healthcare around the globe. Pseudomonas aeruginosa is one of the most frequent multidrug-resistant bacteria that utilize QS to control virulence. Many natural compounds, including furanones, have demonstrated strong inhibitory effects on several pathogens via blocking or attenuating QS. While the natural furanones show no activity against P. aeruginosa, furanone C-30, a brominated derivative of natural furanone compounds, has been reported to be a potent inhibitor of the QS system of the notorious opportunistic pathogen. In the present study, we assess the molecular targets and mode of action of furanone C-30 on P. aeruginosa QS system. Our results suggest that furanone C-30 binds to LasR at the ligand-binding site but fails to establish interactions with the residues crucial for the protein’s productive conformational changes and folding, thus rendering the protein dysfunctional. We also show that furanone C-30 inhibits RhlR, independent of LasR, suggesting a complex mechanism for the agent beyond what is known to date.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 833
Author(s):  
Camila Pimentel ◽  
Casin Le ◽  
Marisel R. Tuttobene ◽  
Tomas Subils ◽  
Krisztina M. Papp-Wallace ◽  
...  

Acinetobacter baumannii has become a serious threat to human health due to its extreme antibiotic resistance, environmental persistence, and capacity to survive within the host. Two A. baumannii strains, A118 and AB5075, commonly used as model systems, and three carbapenem-resistant strains, which are becoming ever more dangerous due to the multiple drugs they can resist, were exposed to 3.5% human serum albumin (HSA) and human serum (HS) to evaluate their response with respect to antimicrobial resistance, biofilm formation, and quorum sensing, all features responsible for increasing survival and persistence in the environment and human body. Expression levels of antibiotic resistance genes were modified differently when examined in different strains. The cmlA gene was upregulated or downregulated in conditions of exposure to 3.5% HSA or HS depending on the strain. Expression levels of pbp1 and pbp3 tended to be increased by the presence of HSA and HS, but the effect was not seen in all strains. A. baumannii A118 growing in the presence of HS did not experience increased expression of these genes. Aminoglycoside-modifying enzymes were also expressed at higher or lower levels in the presence of HSA or HS. Still, the response was not uniform; in some cases, expression was enhanced, and in other cases, it was tapered. While A. baumannii AB5075 became more susceptible to rifampicin in the presence of 3.5% HSA or HS, strain A118 did not show any changes. Expression of arr2, a gene involved in resistance to rifampicin present in A. baumannii AMA16, was expressed at higher levels when HS was present in the culture medium. HSA and HS reduced biofilm formation and production of N-Acyl Homoserine Lactone, a compound intimately associated with quorum sensing. In conclusion, HSA, the main component of HS, stimulates a variety of adaptative responses in infecting A. baumannii strains.


10.3823/846 ◽  
2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Abdelraouf A Elmanama ◽  
Suhaila Al-Sheboul ◽  
Renad I Abu-Dan

Abstract Pseudomonas aeruginosa threatens patient’s care. It is considered as the most complicated health care associated pathogen to be eliminated from infection site. The biofilm forming ability of P. aeruginosa, being a major virulence factor for most pathogenic microorganism, protects it from host immunity and contribute to antibiotic resistance of this organism. It is estimated that about 80% of infectious diseases are due to biofilm mode of growth. Biofilm forming ability of bacteria imparts antimicrobial resistance that leads to many persistent and chronic bacterial infections. The world is becoming increasingly under the threat of entering the “post-antibiotic era”, an era in which the rate of death from bacterial infections is higher than from cancer. This review focus on P. aeruginosa biofilm forming ability; definition, developmental stages, and significance. In addition, the quorum sensing and the antibiotic resistance of this pathogen is discussed. Keywords: Biofilm; bacterial adhesion; Pseudomonas aeruginosa; antimicrobial resistance; quorum sensing.


2021 ◽  
Author(s):  
Eli COMPAORE ◽  
Moussa COMPAORE ◽  
Vincent OUEDRAOGO ◽  
Ablassé ROUAMBA ◽  
Martin KIENDREBEOGO

Abstract Background: Pseudomonas aeruginosa causes infections in human particularly immunocompromised patients with cystic fibrosis, severe burns and HIV, resulting in high morbidity and mortality. The pathogenic bacteria P aeruginosa produces virulence factors regulated by the mechanism called quorum sensing system. Objective: The aim of this study was to assess the anti-quorum sensing activity of Ageratum conyzoides extracts Method: Chromobacterium violaceum reporter strain CV026 was used to highlight any interference with bacterium QS and strains derived from P. aeruginosa PAO1 were used to reveal any interference with the expression of quorum sensing genes, and to assess any impact of extract on the kinetics of the production of pyocyanin, elastases and biofilm formation. Results: Hydro-methanolic extract at the sub-inhibitory concentration of 100 μg/mL reduced quorum sensing virulence factors production such as, pyocyanin, elastases, rhamnolipids and biofilm formation in P. aeruginosa PAO1 after 18 hours monitoring. Extract showed significant inhibition in HSL-mediated violacein production on C. violaceum CV026 after 48 hours monitoring. Biofilm formation was inhibited up to 32%. It affected QS gene expression in PAO1. The regulatory genes lasR / rhlR and the lasI synthases were most affected. At 8hours, hydro-methanolic extract reduced both QS gene to more than 30% (lasI/lasR and rhlI/R respectively 33.8% /30.2% and 36% /33.2%). RhlA and lasB genes have been relatively affected (13.4% and 28.9%). After 18 h, this extract reduced significantly the expression of regulatory 30 genes lasR (31%) and rhlR (39.6%) although synthases genes seemed to be less affected (lasI/21.2% and rhlI/11.6%). A limited impact was observed on the downstream genes (lasB /20.0% and rhlA /15.3%). No negative impact was observed on CV026 and PAO1 growth and cell viability. Our study also showed that A. conyzoides having ample amount of phenolics, flavonoids and triterpenoids. This phytochemical content could be one of the factors for showing anti quorum potential. Conclusion: Results indicate that hydro methanol 80 % extract from A. conyzoides could be a source of potential QS inhibition compounds.


2017 ◽  
Vol 83 (12) ◽  
Author(s):  
Pengyuan Xiu ◽  
Rui Liu ◽  
Dechao Zhang ◽  
Chaomin Sun

ABSTRACT Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium (Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes (flgA and flgP) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote cellular aggregation without inducing cell death. These findings suggest that CLPs hold great promise as potential drug candidates targeting bacterial motility and biofilm formation with a low overall potential for triggering antibiotic resistance.


2019 ◽  
Vol 14 (7) ◽  
pp. 609-622 ◽  
Author(s):  
Kamelia Osman ◽  
Ahmed Orabi ◽  
Ayman Elbehiry ◽  
Mai H Hanafy ◽  
Amr M Ali

Sign in / Sign up

Export Citation Format

Share Document