Evaluation of Thermodynamic and Optical Properties of Sixteen Ionic Liquids at Different Temperature

2020 ◽  
Vol 10 ◽  
Author(s):  
Ramakant ◽  
Subhash Chandra Shrivastava ◽  
Shekhar Srivastava ◽  
J D Pandey

Based on the dimensional analysis ρ-u- thermodynamic and ρ-u- optical properties correlations have been applied to sixteen ionic liquids at different temperatures. The objective of the present work is to employ these relations to ionic liquids. The experimental values of ρ and u have been reported in the literature at different temperatures. We have computed thermal expansivity (α), isothermal compressibility (βT), heat capacities ratio (γ), internal pressure (Pint), pseudo-Grüneisen parameter (Г), energy of vaporization (ΔEV), enthalpy of vaporization (ΔHV), cohesive energy density (ced), solubility parameter (δ), refractive index (n), molar refraction (RM) and polarisability (αp) for these liquids. Results are found to quite satisfactory. Keeping in view of uncertainty in the experimental values of ρ and u, as well as some approximations used, the agreement between experimental and theoretical values is found to be quite satisfactory. The results are discussed critically. Introduction: In the present work, we are applying the ρ-u thermodynamic and ρ-u- optical properties correlations to sixteen ionic liquids to estimate thermodynamic and optical properties at different temperature. The experimental values of ρ and u have been reported in the literature at different temperatures. We have computed α, βT, γ, Pint, Г, ΔEV, ΔHV, ced, δ, n, RM and αp for these liquids. Method: Correlations between density-sound velocity and several thermodynamic properties have been derived on the basis of dimensional analysis On the basis of dimensional analysis, a number of useful and important thermodynamic relations were deduced in terms of density (ρ) and speed of sound (u). Result: Results are found to quite satisfactory. Keeping in view of uncertainty in the experimental values of ρ and u, as well as some approximations used, the agreement between experimental and theoretical values is found to be quite satisfactory. Discussion: Density (ρ) and ultrasonic speed (u) data of sixteen RTILs at different temperatures have been taken from the literature. Calculated values of α, βT, Pint, γ, CP-CV, and, Г obtained from empirical relations. The experimental values of α are given for making a comparative study. Conclusion: Based on the dimensional analysis our recently developed correlations between ρ-u- thermodynamic and ρ-uoptical properties have been found to be quite successful when applied to sixteen ionic liquids for the first time. α, βT, γ, Pint, ΔEVap, ΔHVap, ced, δ as well as RM and αp were calculated at various temperatures.

2021 ◽  
Vol 11 ◽  
Author(s):  
Rama Kant ◽  
Subhash Chandra Shrivastava ◽  
Shekhar Srivastava ◽  
J D Pandey

Introduction: Flory’s statistical theory (FST) for the first time, has been applied successfully to two pure ionic liquids, [C3mim][NTf2] and [C5mim][NTf2] over an extended range of pressure (0.10 – 59.9) MPa and at different temperatures (298.15 – 333.15) K . Methods: : Density and sound speed data have been employed to compute a number of useful and important properties of these ionic liquids in the light of FST. Using Flory parameters (P*, T*, V*, P̃, T̃, Ṽ) the expression for the surface tension (σ) has been deduced in the form σ = σ* σ᷉ (Ṽ), σ* and σ᷉ (Ṽ) being the characteristic and reduced values of surface tension. Since the experimental σ of liquids is not known, the validity of FST has been tested by calculating u using four different u-ρ- σ correlations, namely Auerbach (1948), Altenberg (1950) Singh et al (1997) and Modified Auerbach (2016). Results: A number of useful and important properties of ionic liquids, under the varying physical conditions, have been deduced and compared with the observed ones with quite satisfactory agreement. Such properties include Pint, van der Waals constants (a & b), parachor [P], Eötvas constant (kB), energy (∆EV) and heat of vaporization (∆HV), cohesive energy density (ced), polarity index (n) and solubility parameter (δ). Conclusion: Thus the validity of FST to two ionic liquids under the present study, has been confirmed.


2011 ◽  
Vol 66 (5) ◽  
pp. 345-352
Author(s):  
Anwar Ali ◽  
Firdoos Ahmad Itoo ◽  
Nizamul Haque Ansari

The density ρ, and viscosity η of 0.00, 0.05, 0.10, 0.15, and 0.20 mol kg−1 glycine (Gly), dlalanine (Ala), dl-serine (Ser), and dl-valine (Val) have been measured in 0.002 mol kg−1 aqueous sodium dodecyl sulphate (SDS) at 298.15, 303.15, 308.15, and 313.15 K. These data have been used to calculate the apparent molar volume φv, infinite dilution apparent molar volume φv°, and the standard partial molar volumes of transfer φv° (tr), of the amino acids from water to the aqueous SDS solutions. Falkenhagen coefficient A, Jones-Dole coefficient B, free energies of activation per mole of solvent (aqueous SDS) Δμ1°*, and per mole solute (amino acids) Δμ2°*, also enthalpy ΔH* and entropy ΔS* of activation of viscous flow were evaluated using viscosity data. The molar refraction RD was calculated by using experimental values of the refractive index nD of the systems. The results have been interpreted in terms of ion-ion, ion-polar and hydrophobic-hydrophobic group interactions. The volume of the transfer data suggest that ion-ion intertactions are predominant.


2017 ◽  
Author(s):  
Jose A. Pomposo

Understanding the miscibility behavior of ionic liquid (IL) / monomer, IL / polymer and IL / nanoparticle mixtures is critical for the use of ILs as green solvents in polymerization processes, and to rationalize recent observations concerning the superior solubility of some proteins in ILs when compared to standard solvents. In this work, the most relevant results obtained in terms of a three-component Flory-Huggins theory concerning the “Extra Solvent Power, ESP” of ILs when compared to traditional non-ionic solvents for monomeric solutes (case I), linear polymers (case II) and globular nanoparticles (case III) are presented. Moreover, useful ESP maps are drawn for the first time for IL mixtures corresponding to case I, II and III. Finally, a potential pathway to improve the miscibility of non-ionic polymers in ILs is also proposed.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1035
Author(s):  
Ivan Shtepliuk ◽  
Volodymyr Khranovskyy ◽  
Arsenii Ievtushenko ◽  
Rositsa Yakimova

The growth of high-quality ZnO layers with optical properties congruent to those of bulk ZnO is still a great challenge. Here, for the first time, we systematically study the morphology and optical properties of ZnO layers grown on SiC substrates with off-cut angles ranging from 0° to 8° by using the atmospheric pressure meta–organic chemical vapor deposition (APMOCVD) technique. Morphology analysis revealed that the formation of the ZnO films on vicinal surfaces with small off-axis angles (1.4°–3.5°) follows the mixed growth mode: from one side, ZnO nucleation still occurs on wide (0001) terraces, but from another side, step-flow growth becomes more apparent with the off-cut angle increasing. We show for the first time that the off-cut angle of 8° provides conditions for step-flow growth of ZnO, resulting in highly improved growth morphology, respectively structural quality. Temperature-dependent photoluminescence (PL) measurements showed a strong dependence of the excitonic emission on the off-cut angle. The dependences of peak parameters for bound exciton and free exciton emissions on temperature were analyzed. The present results provide a correlation between the structural and optical properties of ZnO on vicinal surfaces and can be utilized for controllable ZnO heteroepitaxy on SiC toward device-quality ZnO epitaxial layers with potential applications in nano-optoelectronics.


2021 ◽  
pp. 117030
Author(s):  
Fehmi Bardak ◽  
Cemile Bardak ◽  
Caglar Karaca ◽  
Etem Kose ◽  
Sibel Bilgili ◽  
...  

2016 ◽  
Vol 4 (7) ◽  
pp. 2445-2452 ◽  
Author(s):  
Mohammad Ziaur Rahman ◽  
Jingrun Ran ◽  
Youhong Tang ◽  
Mietek Jaroniec ◽  
Shi Zhang Qiao

We introduce a three-step method (co-polymerization, surface activation and exfoliation) for the first time to synthesize sub-nanometer-thin carbon nitride nanosheets as highly efficient hydrogen evolution photocatalysts.


2010 ◽  
Vol 8 (6) ◽  
pp. 1192-1202 ◽  
Author(s):  
Marek Drozd ◽  
Mariusz Marchewka

AbstractThe bis(melaminium) sulphate dihydrate, 2,4,6-triamine-1,3,5-triazin-1,3-ium tartrate monohydrate, 2,4,6-triamine-1,3,5-triazin-1-ium hydrogenphthalate, 2,4,6-triamine-1,3,5-triazin-1-ium acetate acetic acid solvate monohydrate, 2,4,6-triamine-1,3,5-triazin-1-ium bis(selenate) trihydrate, melaminium diperchlorate hydrate, melaminium bis(trichloroacetate) monohydrate and melaminium bis(4-hydroxybenzenesulphonate) dihydrate were discovered recently as perspective materials for nonlinear optical applications. On the basis of X-ray structures for eight melaminium compounds the time dependent Hartree Fock (TDHF) method was used for calculation of the polarizability, and first and second hyperpolarizability. Detailed directional studies of calculated hyperpolarizability for all investigated melaminium compounds are shown. The theoretical results are compared with experimental values of β.


Author(s):  
Mohammad Hemmat Esfe

In the present article, the effects of temperature and nanoparticles volume fraction on the viscosity of copper oxide-ethylene glycol nanofluid have been investigated experimentally. The experiments have been conducted in volume fractions of 0 to 1.5 % and temperatures from 27.5 to 50 °C. The shear stress computed by experimental values of viscosity and shear rate for volume fraction of 1% and in different temperatures show that this nanofluid has Newtonian behaviour. The experimental results reveal that in a given volume fraction when temperature increases, viscosity decreases, but relative viscosity varies. Also, in a specific temperature, nanofluid viscosity and relative viscosity increase when volume fraction increases. The maximum amount of increase in relative viscosity is 82.46% that occurs in volume fraction of 1.5% and temperature of 50 °C. Some models of computing nanofluid viscosity have been suggested. The greatest difference between the results obtained from these models and experimental results was down of 4 percent that shows that there is a very good agreement between experimental results and the results obtained from these models.


2021 ◽  
Vol 900 ◽  
pp. 16-25
Author(s):  
Tabarak Mohammed Awad ◽  
May A.S. Mohammed

In this study, some optical properties were studied of the pure vinyl polyvinyl alcohol (PVA) nanopolymer (German origin). Under the influence of different temperatures and pressures of PVA. Where 25 samples were prepared for the purpose of conducting the research. Which studied the study of these samples was done by recording the absorbance and transmittance spectra of the wavelengths (200-900) nm. From them, absorbance, transmittance, reflectivity, absorption coefficient, refractive index, extinction coefficient, complex dielectric constant were calculated. At different temperatures (25,40, 80, 120, 160)°C. And with different pressures within the range (7.5,8,8.5,9,9.5) MPa. The results are that the permeability of the polymer (PVA) at different temperatures for each pressure decreases with increasing temperature, and that all other calculated optical properties increase with increasing temperature.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3816
Author(s):  
Taleb H. Ibrahim ◽  
Muhammad A. Sabri ◽  
Nabil Abdel Jabbar ◽  
Paul Nancarrow ◽  
Farouq S. Mjalli ◽  
...  

The thermal conductivities of selected deep eutectic solvents (DESs) were determined using the modified transient plane source (MTPS) method over the temperature range from 295 K to 363 K at atmospheric pressure. The results were found to range from 0.198 W·m−1·K−1 to 0.250 W·m−1·K−1. Various empirical and thermodynamic correlations present in literature, including the group contribution method and mixing correlations, were used to model the thermal conductivities of these DES at different temperatures. The predictions of these correlations were compared and consolidated with the reported experimental values. In addition, the thermal conductivities of DES mixtures with water over a wide range of compositions at 298 K and atmospheric pressure were measured. The standard uncertainty in thermal conductivity was estimated to be less than ± 0.001 W·m−1·K−1 and ± 0.05 K in temperature. The results indicated that DES have significant potential for use as heat transfer fluids.


Sign in / Sign up

Export Citation Format

Share Document