Antimicrobial Activity of SPC13, New Antimicrobial Peptide Purified from Scolopendra polymorpha Venom

2020 ◽  
Vol 18 (3) ◽  
pp. 233-238
Author(s):  
Rodríguez-Alejandro C.I. ◽  
M.C. Gutiérrez

Introduction: Currently animal venoms are considered a potential source of numerous bioactive peptides of biochemical and pharmacological interest, such as peptides with antithrombotic, anticoagulant and antimicrobial activity. Methods: Such is the case of the venom from the genus Scolopendromorpha, where numerous PAMs ranging from 2.5 to 4.4 kDa have been purified, they are broad spectrum isolates only of S. subspinipes mutilans. Results: In this study, an antimicrobial peptide (SPC13) of 13 kDa, present in the venom of Scolopendra polymorpha was purified by electroelution and presented antimicrobial activity against S. aureus and P. aeruginosa with MIC of 45 and 192.5 μg/ml respectively, as well as bacteriostatic activity against E. coli at a concentration of 155μg/ml. Conclusion: Additionally, this peptide has a 20.5% hemolytic activity. A partial sequence of SPC13 showed 98% identity with the histone H3 reported in S. viridis (GenkBank: DQ222181.1).

Toxins ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 413 ◽  
Author(s):  
Qi Chen ◽  
Peng Cheng ◽  
Chengbang Ma ◽  
Xinping Xi ◽  
Lei Wang ◽  
...  

Many antimicrobial peptides (AMPs) have been identified from the skin secretion of the frog Hylarana guentheri (H.guentheri), including Temporin, Brevinin-1, and Brevinin-2. In this study, an antimicrobial peptide named Brevinin-1GHa was identified for the first time by using ‘shotgun’ cloning. The primary structure was also confirmed through mass spectral analysis of the skin secretion purified by reversed-phase high-performance liquid chromatography (RP-HPLC). There was a Rana-box (CKISKKC) in the C-terminal of Brevinin-1GHa, which formed an intra-disulfide bridge. To detect the significance of Rana-box and reduce the hemolytic activity, we chemically synthesized Brevinin-1GHb (without Rana-box) and Brevinin-1GHc (Rana-box in central position). Brevinin-1GHa exhibited a strong and broad-spectrum antimicrobial activity against seven microorganisms, while Brevinin-1GHb only inhibited the growth of Staphylococcus aureus (S. aureus), which indicates Rana-box was necessary for the antimicrobial activity of Brevinin-1GHa. The results of Brevinin-1GHc suggested transferring Rana-box to the central position could reduce the hemolytic activity, but the antimicrobial activity also declined. Additionally, Brevinin-1GHa demonstrated the capability of permeating cell membrane and eliminating biofilm of S. aureus, Escherichia coli (E. coli), and Candida albicans (C. albicans). The discovery of this research may provide some novel insights into natural antimicrobial drug design.


2010 ◽  
Vol 55 (1) ◽  
pp. 417-420 ◽  
Author(s):  
Nathaniel P. Chongsiriwatana ◽  
Tyler M. Miller ◽  
Modi Wetzler ◽  
Sergei Vakulenko ◽  
Amy J. Karlsson ◽  
...  

ABSTRACTWe report the creation of alkylated poly-N-substituted glycine (peptoid) mimics of antimicrobial lipopeptides with alkyl tails ranging from 5 to 13 carbons. In several cases, alkylation significantly improved the selectivity of the peptoids with no loss in antimicrobial potency. Using this technique, we synthesized an antimicrobial peptoid only 5 monomers in length with selective, broad-spectrum antimicrobial activity as potent as previously reported dodecameric peptoids and the antimicrobial peptide pexiganan.


2017 ◽  
Vol 21 (1) ◽  
pp. 1 ◽  
Author(s):  
Mada Triandala Sibero ◽  
Desy Wulan Triningsih ◽  
Ocky Karna Radjasa ◽  
Agus Sabdono ◽  
Agus Trianto

Marine sponge associated fungi are known as potential source of metabolites with various biological activities. Natural pigment is one of metabolite which produced by microorgisms. Several researches reported the antimicrobial activity from natural pigment. Unfortunatelly there are lack of information about marine fungi natural pigment and its producer. The aims of this research were to identify yellow pigmented Indonesian marine sponge-associated fungi, to extract the pigment, and to study the antimicrobial activity of the pigment against clinical MDR bacteria and clinical pathogenic fungi. Sponge associated-fungus isolate MT23 was successfully identified as Trichoderma parareesei. The fungal pigment could be extracted only in methanol with yield 6,22±0,29%. The pigment could inhibitted S. typhi and E. coli MDR strains. The biggest antibacterial activity was shown by concentration 1000µg/mL against S. typhi with inhibition zone was 4.03±0.06 mm.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Aleksandra Ołdak ◽  
Dorota Zielińska ◽  
Anna Rzepkowska ◽  
Danuta Kołożyn-Krajewska

Oscypek and korycinski are traditional Polish cheeses, exclusively produced in Tatra and in Podlasie region, respectively, produced from raw, unpasteurized milk. The 29Lactobacillus plantarumstrains were isolated on MRS agar from 12 cheese samples and used as a material for study. The main purpose of the work was to assess the antimicrobial properties and recognition of selected strains for the unique antagonistic activity and preservation role in food. It has been found that the highest antimicrobial activity was observed in the case ofL. monocytogenesstrains; however, the level of that activity was different depending on theLb. plantarumstrain. Strains from oscypek produced broad spectrum, and a few strains isolated from korycinski cheese produced a narrow spectrum of antimicrobial compounds, other than organic acids and hydrogen peroxide. Moreover, the antagonistic activity shown byLb. plantarumstrains is connected with the source from which a given strain was isolated. Strains isolated from oscypek cheese represented stronger activity againstL. monocytogenes, whereas strains isolated from korycinski cheese were more active againstE. coli. StrainsLb. plantarumOs13 and Kor14 could be considered as good candidates for protective cultures to extend durability of food products.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 676 ◽  
Author(s):  
Joon Ha Lee ◽  
Hoyong Chung ◽  
Yong Pyo Shin ◽  
In-Woo Kim ◽  
Sathishkumar Natarajan ◽  
...  

Antimicrobial peptides (AMPs) are the frontline innate defense system evolutionarily preserved in insects to combat invading pathogens. These AMPs could serve as an alternative to classical antibiotics to overcome the burden of treating multidrug resistant bacteria. Psacotheasin, a knottin type AMP was isolated from Psacothea hilaris and shown to exhibit antimicrobial activity, especially against fungi through apoptosis mediated cell death. In this study, we aimed to identify novel probable AMPs from Psacothea hilaris, the yellow spotted longicorn beetle. The beetle was immunized with the two bacterial strains (E. coli and S. aureus), and the yeast strain C. albicans. After immunization, total RNA was isolated and sequenced in Illumina platform. Then, beetle transcriptome was de novo assembled and searched for putative AMPs with the known physiochemical features of the AMPs. A selection of AMP candidates were synthesized and tested for antimicrobial activity. Four peptides showed stronger activity against E. coli than the control AMP, melittin while one peptide showed similar activity against S. aureus. Moreover, four peptides and two peptides showed antifungal activity stronger than and similar to melittin, respectively. Collectively one peptide showed both antibacterial and antifungal activity superior to melittin; thus, it provides a potent antimicrobial peptide. All the peptides showed no hemolysis in all the tested concentrations. These results suggest that in silico mining of insects’ transcriptome could be a promising tool to obtain and optimize novel AMPs for human needs.


Author(s):  
Aloysius Aloysius ◽  
Anjurniza Ulfa ◽  
Anggita Kasih Fianti Situmorang ◽  
Harmileni Harmileni ◽  
Edy Fachrial

Lactic acid bacteria (LAB) could be isolated from various fermented food products. One potential source of LAB is traditional fermented food. The aim of the study was to isolate and investigate antimicrobial activity of LAB isolated from traditional Batak food, “naniura”. The LAB isolates were characterized by Gram staining, fermentation type and catalase test. The investigation of antimicrobial activity of LAB against pathogenic bacteria were conducted using disc diffusion method. The results showed that 6 isolates of BAL were successfully isolated namely BN1, BN2, BN3, BN4, BN5 and BN6 had characteristics of Gram positive, rod shaped and catalase negative. All selected isolate have heterofermentation type. Four isolates (BN1, BN2, BN5 and BN6) were able to inhibit S. aureus, E. coli and S. typhi with inhibition zone diameters ranging from 6,9 to 12,3 cm. Based on the result, it was concluded that LAB isolated from naniura has potential as a source of probiotics.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yong-Gang Xie ◽  
Fei-Fei Han ◽  
Chao Luan ◽  
Hai-Wen Zhang ◽  
Jie Feng ◽  
...  

OG2 is a modified antimicrobial peptide, that is, derived from the frog peptide Palustrin-OG1. It has high antimicrobial activity and low cytotoxicity, and it is therefore promising as a therapeutic agent. Both prokaryotic (Escherichia coli) and eukaryotic (Pichia pastoris) production host systems were used to produce OG2 in our previous study; however, it was difficult to achieve high expression yields and efficient purification. In this study, we achieved high-yield OG2 expression using the intein fusion system. The optimized OG2 gene was cloned into the pTWIN1 vector to generate pTWIN-OG2-intein2 (C-terminal fusion vector) and pTWIN-intein1-OG2 (N-terminal fusion vector). Nearly 70% of the expressed OG2-intein2 was soluble after the IPTG concentration and induction temperature were decreased, whereas only 42% of the expressed of intein1-OG2 was soluble. Up to 75 mg of OG2-intein2 was obtained from a 1 l culture, and 85% of the protein was cleaved by 100 mM DTT. Intein1-OG2 was less amenable to cleavage due to the inhibition of cleavage by the N-terminal amino acid of OG2. The purified OG2 exhibited strong antimicrobial activity againstE. coliK88. The intein system is the best currently available system for the cost-effective production of OG2.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Ravi Bhushan Singh ◽  
Nirupam Das ◽  
Md. Kamaruz Zaman

A series of new 2,4,6-trisubstituted-s-triazine was synthesized, assessed for antimicrobial activity, and characterized by FTIR, 1HNMR, 13CNMR, and elemental analysis. The tested compounds, 4d, 4g, 4h, 4k, and 4n, have shown considerable in vitro antibacterial efficacy with reference to the standard drug ciprofloxacin (MIC 3.125 μgmL−1 against B. subtilis, E. coli, and K. pneumoniae). It was observed that compounds 4d and 4h displayed equipotent antibacterial efficacy against B. subtilis (MIC 3.125 μgmL−1) and S. aureus (MIC 6.25 μgmL−1). The studies demonstrated that the para-fluorophenylpiperazine substituted s-triazine (4n) was potent and exhibited broad spectrum antibacterial activity against S. epidermidis, K. pneumoniae, and P. aeruginosa with MIC of 6.25 μgmL−1 and for E. coli, it showed an MIC of 3.125 μgmL−1 equipotent with reference to the standard drug. Among all the compounds under investigation, compound 4g also demonstrated significant antifungal activity (3.125 μgmL−1) against C. albicans.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Michael Muller

ABSTRACT Silver has emerged as an important therapeutic option for wound infections in recent years due to its broad-spectrum antimicrobial activity. The silver cation (Ag+), but not the bulk metal (Ag0), is highly toxic for most microorganisms, although resistance due to genetic modification or horizontal gene transfer does occur. Pseudomonas aeruginosa, however, achieves silver resistance by producing the redox-active metabolite pyocyanin that reduces Ag+ to nontoxic Ag0. Pyocyanin also possesses broad-spectrum antimicrobial activity. Many microbial species reduce pyocyanin, which reduces molecular oxygen to antimicrobial hydrogen peroxide. In this study, it was hypothesized that both Ag+ and oxygen would act as competing terminal electron acceptors for pyocyanin, thus acting as a universal microbial protectant from Ag+ while avoiding hydrogen peroxide formation. Escherichia coli and Staphylococcus aureus efficiently reduced pyocyanin and generated hydrogen peroxide, while Ag+ markedly reduced the amount of hydrogen peroxide produced. Although unable to reduce directly Ag+ to Ag0 on their own, E. coli and S. aureus did so when pyocyanin was present, resulting in increased survival when exposed to Ag+. Coincubation experiments with either E. coli or S. aureus with P. aeruginosa demonstrated increased survival for those species to Ag+, but only if pyocyanin was present. These data demonstrate that microorganisms that display no intrinsic silver resistance may survive and proliferate under potentially toxic conditions, provided their environment contains a suitable redox-active metabolite-producing bacterium. Chronic wounds are often polymicrobial in nature, with pyocyanin-producing P. aeruginosa bacteria frequently being present; therefore, redox-based silver resistance may compromise treatment efforts.


Sign in / Sign up

Export Citation Format

Share Document