scholarly journals Differential miRNA Expression Profiles in Cumulus and Mural Granulosa Cells from Human Pre-ovulatory Follicles

MicroRNA ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Daniela Andrei ◽  
Roland A. Nagy ◽  
Aafke van Montfoort ◽  
Uwe Tietge ◽  
Martijn Terpstra ◽  
...  

Background: Mural Granulosa Cells (MGCs) and Cumulus Cells (CCs) are two specialized cell types that differentiate from a common progenitor during folliculogenesis. Although these two cell types have specialized functions and gene expression profiles, little is known about their microRNA (miRNA) expression patterns. Objective: To describe the miRNA profile of mural and cumulus granulosa cells from human preovulatory follicles. </P><P> Methods: Using small RNA sequencing, we defined the miRNA expression profiles of human primary MGCs and CCs, isolated from healthy women undergoing ovum pick-up for in vitro Fertilization (IVF). Results: Small RNA sequencing revealed the expression of several hundreds of miRNAs in MGCs and CCs with 53 miRNAs being significantly differentially expressed between MGCs and CCs. We validated the differential expression of miR-146a-5p, miR-149-5p, miR-509-3p and miR-182-5p by RT-qPCR. Analysis of proven targets revealed 37 targets for miR-146a-5p, 43 for miR-182-5p, 2 for miR-509-3p and 9 for miR-149-5p. Gene Ontology (GO) analysis for these 4 target gene sets revealed enrichment of 12 GO terms for miR-146a-5p and 10 for miR-182-5p. The GO term ubiquitin-like protein conjugation was enriched within both miRNA target gene sets. We generated miRNA expression profiles for MGCs and CCs and identified several differentially expressed miRNAs.

2019 ◽  
Vol 26 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Nicole Panarelli ◽  
Kathrin Tyryshkin ◽  
Justin Jong Mun Wong ◽  
Adrianna Majewski ◽  
Xiaojing Yang ◽  
...  

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) can be challenging to evaluate histologically. MicroRNAs (miRNAs) are small RNA molecules that often are excellent biomarkers due to their abundance, cell-type and disease stage specificity and stability. To evaluate miRNAs as adjunct tissue markers for classifying and grading well-differentiated GEP-NETs, we generated and compared miRNA expression profiles from four pathological types of GEP-NETs. Using quantitative barcoded small RNA sequencing and state-of-the-art sequence annotation, we generated comprehensive miRNA expression profiles from archived pancreatic, ileal, appendiceal and rectal NETs. Following data preprocessing, we randomly assigned sample profiles to discovery (80%) and validation (20%) sets prior to data mining using machine-learning techniques. High expression analyses indicated that miR-375 was the most abundant individual miRNA and miRNA cistron in all samples. Leveraging prior knowledge that GEP-NET behavior is influenced by embryonic derivation, we developed a dual-layer hierarchical classifier for differentiating GEP-NET types. In the first layer, our classifier discriminated midgut (ileum, appendix) from non-midgut (rectum, pancreas) NETs based on miR-615 and -92b expression. In the second layer, our classifier discriminated ileal from appendiceal NETs based on miR-125b, -192 and -149 expression, and rectal from pancreatic NETs based on miR-429 and -487b expression. Our classifier achieved overall accuracies of 98.5% and 94.4% in discovery and validation sets, respectively. We also found provisional evidence that low- and intermediate-grade pancreatic NETs can be discriminated based on miR-328 expression. GEP-NETs can be reliably classified and potentially graded using a limited panel of miRNA markers, complementing morphological and immunohistochemistry-based approaches to histologic evaluation.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ren-qiang Yu ◽  
Min Wang ◽  
Shan-yu Jiang ◽  
Ying-hui Zhang ◽  
Xiao-yu Zhou ◽  
...  

Necrotizing enterocolitis (NEC) is the leading cause of death due to gastrointestinal disease in preterm infants. The role of miRNAs in NEC is still unknown. The objective of this study was to identify differentially expressed (DE) miRNAs in rats with NEC and analyze their possible roles. In this study, a NEC rat model was established using Sprague-Dawley rat pups. Small RNA sequencing was used to analyze the miRNA expression profiles in the NEC and control rats. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out to identify target mRNAs for the DE miRNAs and to explore their potential roles. The DE miRNAs were verified by real-time quantitative PCR (RT-qPCR). The status of intestinal injury and the elevated levels of inflammatory cytokines in the NEC group confirmed that the NEC model was successfully established. The 16 miRNAs were found to be differentially expressed between the NEC group and the control group of rats. Bioinformatics analysis indicated that the parental genes of the DE miRNAs were predominantly implicated in the phosphorylation, cell migration, and protein phosphorylation processes. Moreover, the DE miRNAs were mainly found to be involved in the pathways of axon guidance, endocytosis, and focal adhesion, as well as in the Wnt signaling pathway, which is related to colitis. The expression patterns of the candidate miRNAs (rno-miR-27a-5p and rno-miR-187-3p), as assessed by RT-qPCR, were in accordance with the expression patterns obtained by miRNA-sequencing. The miRNA/mRNA/pathway network revealed that rno-miR-27a-5p and rno-miR-187-3p might be involved in NEC via the Wnt signaling pathway. We found an altered miRNA expression pattern in rats with NEC. We hypothesize that rno-miR-27a-5p and rno-miR-187-3p might mediate the NEC pathophysiological processes via the Wnt signaling pathway.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1388-1388
Author(s):  
Xiaomei Chen ◽  
Fang Liu ◽  
Wei Xiong ◽  
Xiangjun Chen ◽  
Cong Lu ◽  
...  

Abstract Abstract 1388 Microvesicles(MVs) are small exosomes of endocytic origin released by normal healthy or damaged cell types, including leukemic cells. MVs have been considered as cell dust, however, recent data bring evidences that MVs generated during cell activation or apoptosis can transfer biologic messages between different cell types. MicroRNAs (miRNAs) have been demonstrated to be aberrantly expressed in leukemia and the overall miRNA expression could differentiate normal versus leukemia. The MVs expressing miRNAs were found in the primary tumors. However it is currently unknown whether miRNA content changes in MVs derived from leukemic cells. Here we compared the miRNA expression in leukemia-derived MVs to corresponding leukemia cells and analysed their roles in leukemia. K562 cells were cultured and collected. MVs derived from K562 cells were also isolated. The presence and levels of specific miRNAs from both MVs derived from K562 cells and K562 cells were determined by Agilent miRNA microarray analysis probing for 888 miRNAs. Some selected miRNAs were verified by real time qRT-PCR. Bioinformatic software tools were used to predict the target genes of identified miRNAs and define their function. Our results showed that 77 and 122 miRNAs were only expressed in MVs and K562 cells, respectively. There were significant differences in miRNA expression profiles between MVs and K562 cells. We also found that 112 miRNAs were co-expressed in MVs and K562 cells. This observaton may suggest that compartmentalization of miRNAs from cells into to MVs, for at least some miRNAs, is an active (selective) process. Among those abnormally expressed miRNAs, some have been proposed oncomiRNAs or tumor suppressors. For example, miR-155, has been proposed as oncomiRNA, was abnormally expressed only in MVs in our study, suggesting that oncomiRNA was present in MVs. Further analysis revealed that 39 potential target genes regulated by miR-155. Among them, 4 genes involed in oncogenes and the signal genes. OncomiRNAs such as miR-27a and miR-21 expressed in both MVs and corresponding cells, indicating that MVs bear miRNA characteristic of the cell origin. MVs, released into the leukemia microenvironment, play an important role in leukemia. In contrast to oncomiRNAs, if miRNA is associated with tumor suppressive activity, it is regarded as a tumor suppressor (oncosuppressor). The aberrantly expressed miR-125a-3p, miR-125-5p,miR-27b, which have implicated as tumor suppressors, appear in both cellular and MVs of leukemia in our study. MiR-125a-3p, miR-125-5p and miR-27b regulated 308 potential target genes. To our knowledge, 10 of them are tumor suppression genes. It is possible that these aberrantly expressed tumor suppressor miRNAs decreased or lost their roles of tumor suppression, which led to decrease or loss their roles of regulating their target genes including oncogenes, consequently resulted in leukemia. Since K562 cells presented t(9;22), we further examined the predicted function of the 6 expressed miRNAs located in chrosome 9 (hsa-miR-188-5p,hsa-miR-602)and 22(hsa-let-7b,hsa-miR-1249,hsa-miR-130b,hsa-miR-185), which expressed both in the MVs and K562 cells. Using the TargetScan, we found 442 predicted targets regulated by 6 miRNAs. Those miRNAs may play roles in leukemia via these 422 genes. This study is the first to identify and define miRNA expression between K562 cells presented t(9;22), derived from K562 cells and their corresponding cells. We found significant differences in miRNA expression between MVs and corresponding leukemia. K562 cells released MVs riched in miRNAs including oncomiRNAs or tumor suppressor miRNAs into leukemia microenvironment, which play a role in leukemia via regulating their targer genes including oncogenes, consequently resulted in leukemia. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 13 (5) ◽  
Author(s):  
Matthew Kanke ◽  
Jeanette Baran-Gale ◽  
Jonathan Villanueva ◽  
Praveen Sethupathy

SummarySmall non-coding RNAs, in particular microRNAs, are critical for normal physiology and are candidate biomarkers, regulators, and therapeutic targets for a wide variety of diseases. There is an ever-growing interest in the comprehensive and accurate annotation of microRNAs across diverse cell types, conditions, species, and disease states. Highthroughput sequencing technology has emerged as the method of choice for profiling microRNAs. Specialized bioinformatic strategies are required to mine as much meaningful information as possible from the sequencing data to provide a comprehensive view of the microRNA landscape. Here we present miRquant 2.0, an expanded bioinformatics tool for accurate annotation and quantification of microRNAs and their isoforms (termed isomiRs) from small RNA-sequencing data. We anticipate that miRquant 2.0 will be useful for researchers interested not only in quantifying known microRNAs but also mining the rich well of additional information embedded in small RNA-sequencing data.


RNA Biology ◽  
2014 ◽  
Vol 11 (11) ◽  
pp. 1375-1385 ◽  
Author(s):  
Jing Gong ◽  
Yuliang Wu ◽  
Xiantong Zhang ◽  
Yifang Liao ◽  
Vusumuzi Leroy Sibanda ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Cheng-Tsung Pan ◽  
Kuo-Wang Tsai ◽  
Tzu-Min Hung ◽  
Wei-Chen Lin ◽  
Chao-Yu Pan ◽  
...  

MicroRNAs (miRNAs) present diverse regulatory functions in a wide range of biological activities. Studies on miRNA functions generally depend on determining miRNA expression profiles between libraries by using a next-generation sequencing (NGS) platform. Currently, several online web services are developed to provide small RNA NGS data analysis. However, the submission of large amounts of NGS data, conversion of data format, and limited availability of species bring problems. In this study, we developed miRSeq to provide alternatives. To test the performance, we had small RNA NGS data from four species, including human, rat, fly, and nematode, analyzed with miRSeq. The alignments results indicate that miRSeq can precisely evaluate the sequencing quality of samples regarding percentage of self-ligation read, read length distribution, and read category. miRSeq is a user-friendly standalone toolkit featuring a graphical user interface (GUI). After a simple installation, users can easily operate miRSeq on a PC or laptop by using a mouse. Within minutes, miRSeq yields useful miRNA data, including miRNA expression profiles, 3′ end modification patterns, and isomiR forms. Moreover, miRSeq supports the analysis of up to 105 animal species, providing higher flexibility.


BIOCELL ◽  
2022 ◽  
Vol 46 (4) ◽  
pp. 1013-1023
Author(s):  
JIABAO WU ◽  
XIAOHUA LIU ◽  
LU HAN ◽  
HUA NIE ◽  
YUAN TANG ◽  
...  

2022 ◽  
Author(s):  
Christian Wake ◽  
Julie A. Schneider ◽  
Thor D. Stein ◽  
Joli Bregu ◽  
Adam Labadorf ◽  
...  

Obesity, the accumulation of body fat to excess, may cause serious negative health effects, including increased risk of heart disease, type 2 diabetes, stroke and certain cancers. The biology of obesity is complex and not well understood, involving both environmental and genetic factors and affecting metabolic and endocrine mechanisms in tissues of the gut, adipose, and brain. Previous RNA sequencing studies have identified transcripts associated with obesity and body mass index in blood and fat, often using animal models, but RNA sequencing studies in human brain tissue related to obesity have not been previously undertaken. We conducted both large and small RNA sequencing of hypothalamus (207 samples) and nucleus accumbens (276 samples) from individuals defined as consistently obese (124 samples), consistently normal weight as controls (148 samples) or selected without respect to BMI and falling within neither case nor control definition (211 samples), based on longitudinal BMI measures. The samples were provided by three cohort studies with brain donation programs; the Framingham Heart Study (FHS), the Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP). For each brain region and large/small RNA sequencing set, differential expression of obesity, BMI, brain region and sex was performed. Analyses were done transcriptome-wide as well as with a priori defined sets of obesity or BMI-associated mRNAs and microRNAs (miRNAs). There are sixteen mRNAs and five microRNAs that are differentially expressed (adjusted p < 0.05) by obesity or BMI in these tissues, several of which were validated with qPCR data. The results include many that are BMI-associated, such as APOBR and CES1, as well as many associated with the immune system and some with addiction, such as the gene sets 'cytokine signaling in immune system' and 'opioid signaling'. In spite of the relatively large number of samples, our study was likely under-powered to detect other transcripts or miRNA with relevant but smaller effects.


2019 ◽  
Vol 41 (5) ◽  
pp. 582-590 ◽  
Author(s):  
Yingyi Zhang ◽  
Ting Han ◽  
Dan Feng ◽  
Jie Li ◽  
Meihong Wu ◽  
...  

Abstract Gastric cancer remains one of the most lethal and prevalent malignancies, particularly in China. The majority of patients are diagnosed with gastric cancer at the late stages of the disease. Besides, the high relapse rate also contributes to the high mortality. Therefore, there exists an imperative need for the development of gastric cancer diagnostic techniques as well as novel indicators for gastric cancer metastasis. Exosomes, secreted by a variety of cell types, play critical roles in intercellular communication, which emerge as promising diagnostic biomarkers for gastric cancer. In this study, we present for the first time, at least to the best of our knowledge, the small RNA sequencing spectra of exosomes derived from the gastric cancer patient plasma using next-generation sequencing, focusing on the exploration of metastasis-related biomarkers. The exosomes enriched from patient plasma samples were well characterized by western blotting, transmission electron microscopy and nanoparticle-tracking analysis. In the following bioinformatic analysis of exosomal miRNAs, three candidates were proposed as the biomarkers for metastasis of gastric cancer, namely miR-10b-5p, miR-101-3p and miR-143-5p, for gastric cancer with lymph node metastasis, gastric cancer with ovarian metastasis and gastric cancer with liver metastasis, respectively. RT–qPCR was performed to test the accuracy of these candidates for validation. In conclusion, we successfully isolated and purified exosomes from plasma of patients with gastric cancer and identified several potential exosomal miRNA markers to distinguish gastric cancer patients with various kinds of metastasis.


Sign in / Sign up

Export Citation Format

Share Document