scholarly journals Novel Drug Delivery Strategies for the Treatment of Onychomycosis

2019 ◽  
Vol 7 (1) ◽  
pp. 24-38 ◽  
Author(s):  
Rupinder K. Dhamoon ◽  
Harvinder Popli ◽  
Madhu Gupta

Onychomycosis accounts for 50% of all nail disease cases and is commonly caused by dermatophytes. It was primarily considered a cosmetic problem but has been garnering attention lately due to its persistent nature and difficult treatment with relapses. With prolonged treatment duration and high cost involved in treating onychomycosis, several attempts have been made in overcoming the rigid nail barrier. The conventional treatment of onychomycosis involves oral and topical therapy. The oral antifungal agents though quite effective, are hepato-toxic and cause drug-drug interactions. Topical therapy is more patient compliant being devoid of such adverse effects but it suffers from another setback of improper nail penetration. Amorolfine and ciclopirox nail lacquers are popular market products. Since decades, efforts have been made to enhance topical delivery for efficiently treating onychomycosis. Mechanical, physical and chemical methods have been employed. Despite all the attempts made, the nail delivery issues are far from being solved. Recently, the focus has shifted to novel drug delivery systems like nanoparticles, microemulsions, polymeric films and nail lacquers for enhanced drug permeation and localized therapy. The research around the world is exploring their potential as effective treatment options. This review intends to further explore the novel delivery strategies to treat a persistent fungal infection like onychomycosis.

Author(s):  
Sagar T. Malsane ◽  
Smita S. Aher ◽  
R. B. Saudagar

Oral route is presently the gold standard in the pharmaceutical industry where it is regarded as the safest, most economical and most convenient method of drug delivery resulting in highest patient compliance. Over the past three decades, orally disintegrating tablets (FDTs) have gained considerable attention due to patient compliance. Usually, elderly people experience difficulty in swallowing the conventional dosage forms like tablets, capsules, solutions and suspensions because of tremors of extremities and dysphagia. In some cases such as motion sickness, sudden episodes of allergic attack or coughing, and an unavailability of water, swallowing conventional tablets may be difficult. One such problem can be solved in the novel drug delivery system by formulating “Fast dissolving tablets” (FDTs) which disintegrates or dissolves rapidly without water within few seconds in the mouth due to the action of superdisintegrant or maximizing pore structure in the formulation. The review describes the various formulation aspects, superdisintegrants employed and technologies developed for FDTs, along with various excipients, evaluation tests, marketed formulation and drugs used in this research area.


2019 ◽  
Vol 87 (3) ◽  
pp. 20 ◽  
Author(s):  
Miléna Lengyel ◽  
Nikolett Kállai-Szabó ◽  
Vince Antal ◽  
András József Laki ◽  
István Antal

Microparticles, microspheres, and microcapsules are widely used constituents of multiparticulate drug delivery systems, offering both therapeutic and technological advantages. Microparticles are generally in the 1–1000 µm size range, serve as multiunit drug delivery systems with well-defined physiological and pharmacokinetic benefits in order to improve the effectiveness, tolerability, and patient compliance. This paper reviews their evolution, significance, and formulation factors (excipients and procedures), as well as their most important practical applications (inhaled insulin, liposomal preparations). The article presents the most important structures of microparticles (microspheres, microcapsules, coated pellets, etc.), interpreted with microscopic images too. The most significant production processes (spray drying, extrusion, coacervation, freeze-drying, microfluidics), the drug release mechanisms, and the commonly used excipients, the characterization, and the novel drug delivery systems (microbubbles, microsponges), as well as the preparations used in therapy are discussed in detail.


Author(s):  
Tushar N. Sonawane ◽  
Pradip D. Dhangar ◽  
Sagar D Patil ◽  
Azam Z. Shaikh

Novel Drug Delivery Systems are one of the widely use delivery system in the presence scenario. Novel drug delivery system is a novel approach to drug delivery that addresses the limitations of the traditional drug delivery systems. In the form of a Novel Drug Delivery System an existing drug molecule can get a new life. The novel drug delivery system is Increases bioavailability and it Can be used for long-term treatments of chronic illness, Sustained maintenance of plasma drug levels as well as it Decreased adverse drug effects in the total amount of drugs required thus reducing side effects it Improved patient compliance due to reduction in number and frequency of doses required. There is less damage sustained by normal tissue due to targeted drug delivery. In this paper our main focus to give the throughout knowledge of some newer (Novel drug delivery system) to understand the concept of the Novel dossage form.


Author(s):  
Solaimuthu Balakrishnan ◽  
Firdous Ahmad Bhat ◽  
Arunakaran Jagadeesan

This chapter deals with the applications of gold nanoparticle in cancer and various strategies to target cancer cells by using gold nanoparticles. They are in great demand for biomedical applications such as DNA/Protein detection, bimolecular regulators, cell imaging and cancer cell diagnostics. The ability to tune the surface of the particle provides access to cell –specific targeting and controlled drug release. Depending on their size, shape, degree of aggregation, and local environment, gold nanoparticles can appear red, blue, or other colors. The novel drug delivery systems offer the opportunity to improve poor solubility, limited stability, bio distribution, and pharmacokinetics of drug as well as offering the potential ability to target specific tissues and cell types. The multifunctional gold nanoparticles are attractive organic –inorganic hybrid material composed of an inorganic metallic gold core surrounded by an organic or bimolecular monolayer they provide desirable attributes for the creation of drug delivery in cancer.


2020 ◽  
Vol 21 (6) ◽  
pp. 2251
Author(s):  
Hamid-Reza Ahmadi-Ashtiani ◽  
Parisa Bishe ◽  
Anna Baldisserotto ◽  
Piergiacomo Buso ◽  
Stefano Manfredini ◽  
...  

Cutaneous stem cells, gained great attention in the field of regenerative medicine as a potential therapeutic target for the treatment of skin and hair disorders and various types of skin cancers. Cutaneous stem cells play a key role in several processes like the renovation of skin structures in the condition of homeostasis and after injuries, the hair follicle growth and the reconstruction and production of melanocytes. Thus, gaining effective access to skin stem cells for therapeutic interventions that often involve active molecules with non-favorable characteristics for skin absorption is a valuable achievement. The topical route with high patient compliance and several other benefits is gaining increasing importance in basic and applied research. However, the major obstacle for topical drug delivery is the effective barrier provided by skin against penetration of the vast majority of exogenous molecules. The research in this field is focusing more and more on new strategies to circumvent and pass this barrier effectively. In this article the existing approaches are discussed considering physical and chemical methods along with utilization of novel drug delivery systems to enhance penetration of drugs to the skin. In particular, attention has been paid to studies finalized to the delivery of molecules to cutaneous stem cells with the aim of transferring signals, modulating their metabolic program, inducing physiological modifications and stem cell gene therapy.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Kaisar Raza ◽  
Manish Kumar ◽  
Pramod Kumar ◽  
Ruchi Malik ◽  
Gajanand Sharma ◽  
...  

Osteoarthritis (OA), a common musculoskeletal disorder, is projected to affect about 60 million people of total world population by 2020. The associated pain and disability impair the quality of life and also pose economic burden to the patient. Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely prescribed in OA, while diclofenac is the most prescribed one. Oral NSAIDs are not very patient friendly, as they cause various gastrointestinal adverse effects like bleeding, ulceration, and perforation. To enhance the tolerability of diclofenac and decrease the common side effects, aceclofenac (ACE) was developed by its chemical modification. As expected, ACE is more well-tolerated than diclofenac and possesses superior efficacy but is not completely devoid of the NSAID-tagged side effects. A series of chemical modifications of already planned drug is unjustified as it consumes quanta of time, efforts, and money, and this approach will also pose stringent regulatory challenges. Therefore, it is justified to deliver ACE employing tools of drug delivery and nanotechnology to refine its safety profile. The present review highlights the constraints related to the topical delivery of ACE and the various attempts made so far for the safe and effective topical delivery employing the novel materials and methods.


Sign in / Sign up

Export Citation Format

Share Document