Review: Emerging role of nanosuspensions for drug delivery and stability

2021 ◽  
Vol 06 ◽  
Author(s):  
Hitesh Kumar Dewangan ◽  
Brijesh Yadav ◽  
Manas Kumar Jha

: Poor aqueous solubility of some of the drug molecules are of a major concern, which can be emerged in the nano-suspension for better delivery. Coming up to the nanoparticles, it enhances the bioavailability along with the aqueous solubility of the drug which is accomplished by increasing the active surface area of the drug. The gained attention of the nanosuspension is due to its stabilization facility which is done by polymers such as polyethylene glycol (PEG) having a particular size range of 10-100 nm. Hence, to our notice, these nanoparticles have the capacity of binding in the targeted parts with a very low damage to the healthy tissues. These are seen to be prepared by various methods such as media milling, high pressure homogenization, and emulsification along with melt emulsification. Apart it can also be seen that surface modification and solidification have been used to add specific properties to the advanced therapies as post-processing techniques. These days, it is very evident that the drugs are water insoluble and thus have a poor bioavailability which have been developed from the drug delivery programmes and in order to combat this obstacle, nanotechnology have been found to be of specific interest. In order to elevate the bioavailability by increasing the dissolution rate, the methodology of reduction of the associated drug particles into its subsequent submicron range is incorporated. For oral and non-oral administration, these nanosuspensions formulations are used for delivering of the drugs.

2021 ◽  
Vol 12 ◽  
Author(s):  
Hitesh Kumar Dewangan

: Poor solubility of some medicinal compounds is a serious challenge that can be addressed by using a nano-suspension for improved delivery. The nanoparticles enhance the bioavailability along with the aqueous solubility of the drug, which is accomplished by increasing the active surface area of the drug. The gained attention of the nanosuspension is due to its stabilization facility, which is achieved by polymers, such as polyethylene glycol (PEG), having a particular size range of 10 - 100 nm. Hence, these nanoparticles have the capacity of binding to the targeted with very low damage to the healthy tissues. These are prepared by various methods, such as milling, high-pressure homogenization, and emulsification, along with melt emulsification. Moreover, surface modification and solidification have been used to add specific properties to the advanced therapies as post-processing techniques. For many decades, it has been known that water solubility hampers the bioavailability and not all drugs are water-soluble. In order to combat this obstacle, nanotechnology has been found to be of specific interest. For elevating the bioavailability by increasing the dissolution rate, the methodology of reduction of the associated drug particles into their subsequent submicron range is incorporated. For oral and non-oral administration, these nanosuspension formulations are used for the delivery of drugs.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Roya Yadollahi ◽  
Krasimir Vasilev ◽  
Spomenka Simovic

Poor aqueous solubility of some drug molecules is a major problem in drug formulation. Drug nanosuspensions emerged as one solution to delivering such hydrophobic drugs. Scaling down to nanoparticles enhances drug aqueous solubility and bioavailability by increasing drug surface area that comes into contact with biological media. Nanosuspensions that have attracted particular attention are those sterically stabilised by steric polymers such as polyethylene glycol (PEG) with a typical size range of 10–100 nm. These nanoparticles are capable of accumulating in targeted areas such as cancer tissues and infarct zones with minimal damage to healthy tissues. Nanosuspensions are often prepared by commercially available methods such as high pressure homogenization, media milling, emulsification, and melt emulsification. Solidification and surface modification methods are post-processing techniques used to add particular properties for advanced therapies. In this review, we firstly describe preparation methods for nanosuspensions. Secondly, we highlight typical characterization techniques. Finally, we describe several practical application of applications for drug delivery design and different administration routes such as parenteral, pulmonary, oral, and ocular.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 294 ◽  
Author(s):  
Mostafa Mabrouk ◽  
Rajakumari Rajendran ◽  
Islam E. Soliman ◽  
Mohamed M. Ashour ◽  
Hanan H. Beherei ◽  
...  

Pharmaceutical particulates and membranes possess promising prospects for delivering drugs and bioactive molecules with the potential to improve drug delivery strategies like sustained and controlled release. For example, inorganic-based nanoparticles such as silica-, titanium-, zirconia-, calcium-, and carbon-based nanomaterials with dimensions smaller than 100 nm have been extensively developed for biomedical applications. Furthermore, inorganic nanoparticles possess magnetic, optical, and electrical properties, which make them suitable for various therapeutic applications including targeting, diagnosis, and drug delivery. Their properties may also be tuned by controlling different parameters, e.g., particle size, shape, surface functionalization, and interactions among them. In a similar fashion, membranes have several functions which are useful in sensing, sorting, imaging, separating, and releasing bioactive or drug molecules. Engineered membranes have been developed for their usage in controlled drug delivery devices. The latest advancement in the technology is therefore made possible to regulate the physico-chemical properties of the membrane pores, which enables the control of drug delivery. The current review aims to highlight the role of both pharmaceutical particulates and membranes over the last fifteen years based on their preparation method, size, shape, surface functionalization, and drug delivery potential.


2019 ◽  
Vol 9 (3) ◽  
pp. 300-310
Author(s):  
Manish Kumar ◽  
Nithya Shanthi ◽  
Arun Kumar Mahato

Introduction: Nanocrystals constitutes of 100% drug and considered as a “new drug” by Food and Drug Administration. It is proven to be an effective alternative for topical delivery of drug with increased bioavailability. Recently formulation of the drug as nanocrystals has been accomplished for many drugs exhibiting low aqueous solubility, ineffective permeability or both in order to increase the dermal bioavailability. Conclusion: In this review article, an effort was made to explain the role of nanocrystals in the dermal delivery of the drug which results in increased bioavailability and efficacy through enhancement of solubility, dissolution velocity, permeation and penetration. Recently dermal delivery of the drug as nanocrystals is a challenging method but explained by many researchers through their work. Preparation of drugs as nanocrystals might be a promising method of drug delivery to Class II and Class IV drugs of Biopharmaceutical Classification System. Drug nanocrystals can also be applied in cosmetics for effective results.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Shweta Gupta ◽  
Rajesh Kesarla ◽  
Abdelwahab Omri

Poorly water-soluble drug candidates are becoming more prevalent. It has been estimated that approximately 60–70% of the drug molecules are insufficiently soluble in aqueous media and/or have very low permeability to allow for their adequate and reproducible absorption from the gastrointestinal tract (GIT) following oral administration. Formulation scientists have to adopt various strategies to enhance their absorption. Lipidic formulations are found to be a promising approach to combat the challenges. In this review article, potential advantages and drawbacks of various conventional techniques and the newer approaches specifically the self-emulsifying systems are discussed. Various components of the self-emulsifying systems and their selection criteria are critically reviewed. The attempts of various scientists to transform the liquid self-emulsifying drug delivery systems (SEDDS) to solid-SEDDS by adsorption, spray drying, lyophilization, melt granulation, extrusion, and so forth to formulate various dosage forms like self emulsifying capsules, tablets, controlled release pellets, beads, microspheres, nanoparticles, suppositories, implants, and so forth have also been included. Formulation of SEDDS is a potential strategy to deliver new drug molecules with enhanced bioavailability mostly exhibiting poor aqueous solubility. The self-emulsifying system offers various advantages over other drug delivery systems having potential to solve various problems associated with drugs of all the classes of biopharmaceutical classification system (BCS).


Author(s):  
Kevin M. Shakesheff ◽  
Martyn C. Davies ◽  
Clive J. Roberts ◽  
Saul J. B. Tendler ◽  
Philip M. Williams

Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


2020 ◽  
Vol 23 (15) ◽  
Author(s):  
Ritika Puris ◽  
Chandan Sharma ◽  
Dr. Manish Goswami

Author(s):  
Pramod Dhakal ◽  
Ankit a Achary ◽  
Vedamurthy Joshi

Bioenhancers are drug facilitator which do not show the typical drug activity but in combination to enhance the activity of other molecule in several way including increase the bioavailability of drug across the membrane, potentiating the drug molecules by conformational interaction, acting as receptor for drug molecules and making target cell more receptive to drugs and promote and increase the bioactivity or bioavailability or the uptake of drugs in combination therapy. The objective of the present study was to evaluate the antibacterial and activity of combination in Azadirachta indica extract with cow urine distillate and pepper extract against common pathogenic bacteria, a causative agent of watery diarrhea. It has been found that Indian indigenous cow urine and its distillate also possess bioenhancing ability. Bioenhancing role of cow urine distillate (CUD) and pepper extract was investigated on antibacterial activity of ethanol extract of Azadirachta indica. Antibacterial activity of ethanol extract neem alone and in combination with CUD and pepper extract were determined the ATCC strains against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and E-coli by cup plate diffusion method. Ethanol extract of neem has showed more effect on P. aeruginosa, E-coli than S. aureus and K. pneumonia with combination of CUD and pepper extract. CUD and pepper did not show any inhibition of test bacteria in low concentration. The antibacterial effect of combination of extract and CUD was higher than the inhibition caused by extract alone and is suggestive of the bioenhancing role of cow urine distillate and pepper. Moreover, inhibition of test bacteria was observed with less concentration of extract on combining with CUD


Sign in / Sign up

Export Citation Format

Share Document