Energy Efficiency in IoT based on Sensor Node Deployment Pattern

Author(s):  
Sunita Gupta ◽  
Sakar Gupta

: IoT becomes more complicated due to its large size. The existing techniques of Wireless Sensor Networks (WSN) are not useful directly to the IoT. That’s why the using the energy efficient schemes for the IoT is a challenging issue. Due to battery constrained IoT devices, energy efficiency is of greatest importance. This paper gives overview and broad survey on IoT, WSN in IoT, Challenges in IoT and WSN, energy conserving issues and solutions and different Node Deployment patterns. For green IoT, this paper addresses energy competence issues by proposing an energy efficient heuristic for a regular and particular deployment scheme. QC-MCSC heuristic is implemented for Strip Based Deployment Pattern and analyzed in terms of Energy Efficiency and Life Time of a sensor on Energy Latency Density Design Space, a topology management application that is power efficient. QC-MCSC for Strip based deployment pattern and for random deployment pattern are compared.

Author(s):  
Sunita Gupta ◽  
Sakar Gupta ◽  
Dinesh Goyal

: A serious problem in Wireless Sensor Networks (WSNs) is to attain high-energy efficiency as battery is used to power and have limited stored energy. They can’t be suitably replaced or recharged. Appearance of renewable energy harvesting techniques and their combination with sensor devices gives Energy Harvesting Wireless Sensor Networks (EHWSNs). IoT is now becoming part of our lives, comforting simplifying our routines and work life. IoT is very popular . It connects together, computes, communicates and performs the required task. IoT is actually a network of physical devices or things that can interact with each other to share information. This paper gives an overview of WSN and IoT, related work, different ways of connecting WSN with internet, development of smart home, challenges for WSN etc. Next a Framework for performance optimization in IoT is given and QC-PC-MCSC heuristic is analyzed in terms of Energy Efficiency and Life Time of a sensor on Energy Latency Density Design Space, a topology management application that is power efficient. QC-PC-MCSC and QC-MCSC are compared for Energy Efficiency and Life Time of a sensor over energy latency density design space, a topology management application.


Author(s):  
Hugo Hens

Since the 1990s, the successive EU directives and related national or regional legislations require new construction and retrofits to be as much as possible energy-efficient. Several measures that should stepwise minimize the primary energy use for heating and cooling have become mandated as requirement. However, in reality, related predicted savings are not seen in practice. Two effects are responsible for that. The first one refers to dweller habits, which are more energy-conserving than the calculation tools presume. In fact, while in non-energy-efficient ones, habits on average result in up to a 50% lower end energy use for heating than predicted. That percentage drops to zero or it even turns negative in extremely energy-efficient residences. The second effect refers to problems with low-voltage distribution grids not designed to transport the peaks in electricity whensunny in summer. Through that, a part of converters has to be uncoupled now and then, which means less renewable electricity. This is illustrated by examples that in theory should be net-zero buildings due to the measures applied and the presence of enough photovoltaic cells (PV) on each roof. We can conclude that mandating extreme energy efficiency far beyond the present total optimum value for residential buildings looks questionable as a policy. However, despite that, governments and administrations still seem to require even more extreme measurements regarding energy efficiency.


Author(s):  
Sangsoon Lim ◽  
Hayoung Oh

<p>Energy conserving MAC protocols performing adaptive duty-cycling mechanism have been widely studied to improve the energy efficiency in Wireless Sensor Networks (WSNs). In particular, several asynchronous Low Power Listening (LPL) MAC protocols such as B-MAC, X-MAC and ContikiMAC transmit a long preamble or consecutive data packets for an efficient rendezvous between senders and receivers. However, the rendezvous results in the challenging problem of unnecessary channel utilization since the senders occupy a large portion of the medium. Furthermore, when a traffic generation time overlaps with other neighbouring nodes, they frequently encounter spatially-correlated contention incurring excessive channel contention. In this paper, we propose a novel traffic distribution scheme called an Energy Efficient Transmission Alignment (EETA), that shifts a traffic generation time of the application layer. By using a MAC layer feedback including contention information, the cross-layer framework determines whether the node delays its transmission or not. EETA is robust from the heavy contending environment due to its traffic distribution feature. We evaluate the performance of EETA through diverse experiments on the TelosB platform. The results show that EETA improves the overall energy efficiency by up to 35%, and reduces the latency by up to 48% compared to the existing scheme.</p>


2021 ◽  
Author(s):  
Norisvaldo Ferraz Junior ◽  
Anderson AA Silva ◽  
Adilson E Guelfi ◽  
Sergio T Kofuji

Abstract Background: The Internet of Things (IoT) enables the development of innovative applications in various domains such as healthcare, transportation, and Industry 4.0. Publish-subscribe systems enable IoT devices to communicate with the cloud platform. However, IoT applications need context-aware messages to translate the data into contextual information, allowing the applications to act cognitively. Besides, end-to-end security of publish-subscribe messages on both ends (devices and cloud) is essential. However, achieving security on constrained IoT devices with memory, payload, and energy restrictions is a challenge. Contribution: Messages in IoT need to achieve both energy efficiency and secure delivery. Thus, the main contribution of this paper refers to a performance evaluation of a message structure that standardizes the publish-subscribe topic and payload used by the cloud platform and the IoT devices. We also propose a standardization for the topic and payload for publish-subscribe systems. Conclusion: The messages promote energy efficiency, enabling ultra-low-power and high-capacity devices and reducing the bytes transmitted in the IoT domain. The performance evaluation demonstrates that publish-subscribe systems (namely, AMQP, DDS, and MQTT) can use our proposed energy-efficient message structure on IoT. Additionally, the message system provides end-to-end confidentiality, integrity, and authenticity between IoT devices and the cloud platform.


IOT enables devices to be managed and monitored anywhere from internet. With IOT gaining popularity, billions of devices are connected to internet and they are being used for many applications like home automation, public safety, smart city, traffic monitoring etc. IOT interconnectivity to internet based on mesh network is the most used topology due to effectiveness in scalability and reliability. The mesh network must be optimized in terms of QOS, energy efficiency for the case of nature of traffic from IOT devices. Towards this end, this work proposes an energy efficient QOS guaranteed cross layer solution for mesh backbone based IOT network. The proposed cross layer solution applies changes at Application, session, network layer to achiness a better QOS and energy efficiency than existing solutions discussed in literature.


Author(s):  
Sangsoon Lim ◽  
Hayoung Oh

<p>Energy conserving MAC protocols performing adaptive duty-cycling mechanism have been widely studied to improve the energy efficiency in Wireless Sensor Networks (WSNs). In particular, several asynchronous Low Power Listening (LPL) MAC protocols such as B-MAC, X-MAC and ContikiMAC transmit a long preamble or consecutive data packets for an efficient rendezvous between senders and receivers. However, the rendezvous results in the challenging problem of unnecessary channel utilization since the senders occupy a large portion of the medium. Furthermore, when a traffic generation time overlaps with other neighbouring nodes, they frequently encounter spatially-correlated contention incurring excessive channel contention. In this paper, we propose a novel traffic distribution scheme called an Energy Efficient Transmission Alignment (EETA), that shifts a traffic generation time of the application layer. By using a MAC layer feedback including contention information, the cross-layer framework determines whether the node delays its transmission or not. EETA is robust from the heavy contending environment due to its traffic distribution feature. We evaluate the performance of EETA through diverse experiments on the TelosB platform. The results show that EETA improves the overall energy efficiency by up to 35%, and reduces the latency by up to 48% compared to the existing scheme.</p>


Author(s):  
C. Friedrich ◽  
H. Kopfer ◽  
G. Dinger ◽  
T. Gerhard

Energy Efficiency today is important for engineering design of new technical component systems; almost any design engineer knows about this. But in many cases the (design) engineers do not think about the significant contribution of optimized fastening systems. This paper shows the fundamental influences and gives examples with numeric values. Conclusions with respect to all main steps in life time are drawn which should be considered for future developments of fastening systems in energy efficient products.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Vially Kazadi Mutombo ◽  
Seungyeon Lee ◽  
Jusuk Lee ◽  
Jiman Hong

Wireless sensor devices are the backbone of the Internet of things (IoT), enabling real-world objects and human beings to be connected to the Internet and interact with each other to improve citizens’ living conditions. However, IoT devices are memory and power-constrained and do not allow high computational applications, whereas the routing task is what makes an object to be part of an IoT network despite of being a high power-consuming task. Therefore, energy efficiency is a crucial factor to consider when designing a routing protocol for IoT wireless networks. In this paper, we propose EER-RL, an energy-efficient routing protocol based on reinforcement learning. Reinforcement learning (RL) allows devices to adapt to network changes, such as mobility and energy level, and improve routing decisions. The performance of the proposed protocol is compared with other existing energy-efficient routing protocols, and the results show that the proposed protocol performs better in terms of energy efficiency and network lifetime and scalability.


One of the popular and emerging networks is wireless sensor networks (WSN), where it comprises of an unlimited number of sensors deployed dynamically and irregularly in a geolocation, for a specific purpose. Each sensor node in the network sense, collect and transmit the environmental data from one location to other location. All the nodes have the capabilities of transmitting and receiving the documents. The major problem in WSN is energy efficiency and network lifetime. By reducing the energy consumption, the network life time can be increased. Clustering, scheduling and other related methods are used to reduce the energy consumption, during the data transmission and receiving. This paper proposed a Reliable Energy Efficient Data Aggregation (REEDA) method for improving the energy efficiency. All the common nodes or the cluster head nodes gather, aggregate, and transmit the data where it reduces the energy consumption. The aggregation method is applied according to correlation of data packets generated by entire node. Simulations results prove that the proposed algorithm provides a good solution for minimizing communication and computation cost.


2018 ◽  
pp. 113-119
Author(s):  
Gennady Ya. Vagin ◽  
Eugene B. Solntsev ◽  
Oleg Yu. Malafeev

The article analyses critera applying to the choice of energy efficient high quality light sources and luminaires, which are used in Russian domestic and international practice. It is found that national standards GOST P 54993–2012 and GOST P 54992– 2012 contain outdated criteria for determining indices and classes of energy efficiency of light sources and luminaires. They are taken from the 1998 EU Directive #98/11/EU “Electric lamps”, in which LED light sources and discharge lamps of high intensity were not included. A new Regulation of the European Union #874/2012/EU on energy labelling of electric lamps and luminaires, in which these light sources are taken into consideration, contains a new technique of determining classes of energy efficiency and new, higher classes are added. The article has carried out a comparison of calculations of the energy efficiency classes in accordance with GOST P 54993 and with Regulation #874/2012/EU, and it is found out that a calculation using GOST P 54993 gives underrated energy efficiency classes. This can lead to interdiction of export for certain light sources and luminaires, can discredit Russian domestic manufacturer light sources and does not correspond to the rules of the World Trade Organization (WTO).


Sign in / Sign up

Export Citation Format

Share Document