scholarly journals Влияние коагуляции капель воды на их распределение по размерам в рабочей части аэрохолодильной установки

2019 ◽  
Vol 89 (4) ◽  
pp. 491
Author(s):  
М.В. Тимофеева

AbstractMathematical simulation of coagulation of droplets of finite number of size fractions of a polydisperse mixture, injected by a nozzle into the region of an air-cooler unit along air flux motion direction, was performed. Sets of differential equations describing dependences of droplet fraction concentrations, their densities, as well as masses of droplets in each fraction on time, were solved using the fourth-order Runge–Kutta method. Negligibility of the impact of heat-mass exchange between the substance of droplets and surrounding air on changing their sizes during motion from the nozzle to the operating part of the device is shown. Decomposition of droplets is not simulated, since the critical Weber number is not reached in the considered operating regime of the air-cooler. Results of simulation of droplet coagulation in turbulent air flux show that distributions of droplets by sizes near the surface of a spraying nozzle do not coincide, which proves the necessity of accounting this process in simulation of ice coating of aircrafts in ground conditions.

Author(s):  
Purbarun Dhar ◽  
Soumya Ranjan Mishra ◽  
Ajay Gairola ◽  
Devranjan Samanta

This article highlights the role of non-Newtonian (elastic) effects on the droplet impact phenomenon at temperatures considerably higher than the boiling point, especially at or above the Leidenfrost regime. The Leidenfrost point (LFP) was found to decrease with an increase in the impact Weber number (based on the velocity just before the impact) for fixed polymer (polyacrylamide) concentrations. Water droplets fragmented at very low Weber numbers (approx. 22), whereas the polymer droplets resisted fragmentation at much higher Weber numbers (approx. 155). We also varied the polymer concentration and observed that, up to 1000 ppm, the LFP was higher than that for water. This signifies that the effect can be delayed by the use of elastic fluids. We have shown the possible role of elastic effects (manifested by the formation of long lasting filaments) during retraction in the increase of the LFP. However, for 1500 ppm, the LFP was lower than that for water, but had a similar residence time during the initial impact. In addition, we studied the role of the Weber number and viscoelastic effects on the rebound behaviour at 405°C. We observed that the critical Weber number up to the point at which the droplet resisted fragmentation at 405°C increased with the polymer concentration. In addition, for a fixed Weber number, the droplet rebound height and the hovering time period increased up to 500 ppm, and then decreased. Similarly, for fixed polymer concentrations like 1000 and 1500 ppm, the rebound height showed an increasing trend up to certain a certain Weber number and then decreased. This non-monotonic behaviour of rebound heights was attributed to the observed diversion of the rebound kinetic energy to rotational energy during the hovering phase. Finally, a relationship between the non-dimensional Leidenfrost temperature and the associated Weber and Weissenberg numbers is developed, and a scaling relation is proposed.


Author(s):  
Artem Lapenkov ◽  
Artem Lapenkov ◽  
Yury Zuyev ◽  
Yury Zuyev ◽  
Nadezhda Zuyeva ◽  
...  

Coastal zones have great diversity of resources. The shallow water zones contain the most of plant and benthic communities. A description of relief and type of ground is needed for the rigorous monitoring of biota and environmental condition of coastal zone. Generally, on the basis of these data the investigation methods of the coastal zone are selected. The shallows research strategy has been developed by us for northern part of the Lake Ladoga. If the coastal areas are characterized by great depth and flat topography, then sonar’s can be used to describe them and samples of ground can be taken by bottom grabs. In the Lake Ladoga these methods don’t operate correctly by reason of the compound bottom relief and the fact that a sizeable part of the bottom is occupied by hard ground. Therefore, our investigations base on the diving transect method of Golikov and Skarlato (1965). A diver moves along transects. He registers the depth, length to coastline, water temperature, relief and ground, edificators and records video. In the laboratory all these data are decoded and used for mapping of bays. Studies of plant communities have been performed and strategy for research of benthic communities in complex relief and hard ground conditions has been developed based on the descriptions of shallow waters. Description of the Malay Nikonovskia Bay bottom has given an opportunity to estimate changes in the bottom of the bay under the influence of the trout farm.


2005 ◽  
Vol 473-474 ◽  
pp. 429-434 ◽  
Author(s):  
Olga Verezub ◽  
György Kaptay ◽  
Tomiharu Matsushita ◽  
Kusuhiro Mukai

Penetration of model solid particles (polymer, teflon, nylon, alumina) into transparent model liquids (distilled water and aqueous solutions of KI) were recorded by a high speed (500 frames per second) camera, while the particles were dropped from different heights vertically on the still surface of the liquids. In all cases a cavity has been found to form behind the solid particle, penetrating into the liquid. For each particle/liquid combination the critical dropping height has been measured, above which the particle was able to penetrate into the bulk liquid. Based on this, the critical impact particle velocity, and also the critical Weber number of penetration have been established. The critical Weber number of penetration was modelled as a function of the contact angle, particle size and the ratio of the density of solid particles to the density of the liquid.


Author(s):  
Martin Preene ◽  
Mike Chrimes

The Kilsby Tunnel, constructed in the 1830s, faced severe problems when a section of the tunnel, almost 400 m long, encountered unstable ‘quicksand’ conditions. The engineer for the project, Robert Stephenson, developed an extensive groundwater lowering scheme, unique for the time, using steam engines pumping from multiple shafts, to overcome the quicksand. Modern geological information indicates most of the tunnel was in Middle Lias bedrock, but the ‘quicksand’ section passed through a buried channel of water-bearing sand of glacial origin. In the early 19th century the impact of glacial processes on British geology was not widely accepted and, based on contemporary geological knowledge, Stephenson’s problems appear to be genuine unforeseen ground conditions, not predicted by his experienced advisers. It seems just random chance that trial borings missed the buried channel of sand. The work at Kilsby was two decades before Darcy’s law established the theoretical understanding for groundwater flow, and 90 years before Terzaghi’s effective stress theory described how reducing pore water pressures changed ‘quicksand’ into a stable and workable material. Despite the lack of existing theories, Stephenson used careful observations and interpretation of groundwater flow in the ‘quicksand’ to navigate the tunnel project to a successful conclusion.


Author(s):  
Hamdy Hassan

Abstract In this paper, a theoretical study is presented on enhancement of the solar still performance by using the exhaust gases passing inside a chimney under the still basin. The impact of the exhaust gases temperature on the solar still temperature, productivity, and efficiency are considered. The performance of solar still with chimney is compared with that of conventional solar still. The study is carried out under the hot and climate conditions of Upper Egypt. A complete transient mathematical model of the physical model including the solar still regions temperatures, productivity, and heat transfer between the solar still and the exhaust gases are constructed. The mathematical model is solved numerically by using fourth-order Runge-Kutta method and is programmed by using MATLAB. The mathematical model is validated using an experimental work. The results show that the solar still saline water temperature increases and productivity with using and rising the exhaust gases. Furthermore, the impact of using exhaust gases on the still performance in winter is greater than in summer. using chimney exhaust gases at 75 °C and 125 °C enhances the daily freshwater yield of the conventional still by more than three times and about six times in winter, respectively, and about two and half times and more than three times in summer, respectively.


2021 ◽  
Vol 9 (11) ◽  
pp. 1253
Author(s):  
Yuriy N. Savchenko ◽  
Georgiy Y. Savchenko ◽  
Yuriy A. Semenov

Cavity flow around a wedge with rounded edges was studied, taking into account the surface tension effect and the Brillouin–Villat criterion of cavity detachment. The liquid compressibility and viscosity were ignored. An analytical solution was obtained in parametric form by applying the integral hodograph method. This method gives the possibility of deriving analytical expressions for complex velocity and for potential, both defined in a parameter plane. An expression for the curvature of the cavity boundary was obtained analytically. By using the dynamic boundary condition on the cavity boundary, an integral equation in the velocity modulus was derived. The particular case of zero surface tension is a special case of the solution. The surface tension effect was computed over a wide range of the Weber number for various degrees of cavitation development. Numerical results are presented for the flow configuration, the drag force coefficient, and the position of cavity detachment. It was found that for each radius of the edges, there exists a critical Weber number, below which the iterative solution process fails to converge, so a steady flow solution cannot be computed. This critical Weber number increases as the radius of the edge decreases. As the edge radius tends to zero, the critical Weber number tends to infinity, or a steady cavity flow cannot be computed at any finite Weber number in the case of sharp wedge edges. This shows some limitations of the model based on the Brillouin–Villat criterion of cavity detachment.


2019 ◽  
Author(s):  
İrem Çelen ◽  
Aroshan Jayasinghe ◽  
Jung H. Doh ◽  
Chandran R. Sabanayagam

AbstractBackgroundGiven the growing interest in human exploration of space, it is crucial to identify the effect of space conditions on biological processes. The International Space Station (ISS) greatly helps researchers determine these effects. However, the impact of the ISS-introduced potential confounders (e.g., the combination of radiation and microgravity exposures) on the biological processes are often neglected, and separate investigations are needed to uncover the impact of individual conditions.ResultsHere, we analyze the transcriptomic response of Caenorhabditis elegans to simulated microgravity and observe the maintained transcriptomic response after return to ground conditions for four, eight, and twelve days. Through the integration of our data with those in NASA GeneLab, we identify the gravitome, which we define as microgravity-responsive transcriptomic signatures. We show that 75% of the simulated microgravity-induced changes on gene expression persist after return to ground conditions for four days while most of these changes are reverted after twelve days return to ground conditions. Our results from integrative RNA-seq and mass spectrometry analyses suggest that simulated microgravity affects longevity regulating insulin/IGF-1 and sphingolipid signaling pathways.ConclusionsOur results address the sole impact of simulated microgravity on transcriptome by controlling for the other space-introduced conditions and utilizing RNA-seq. Using an integrative approach, we identify a conserved transcriptomic signature to microgravity and its sustained impact after return to the ground. Moreover, we present the effect of simulated microgravity on distinct ceramide profiles. Overall, this work can provide insights into the sole effect of microgravity on biological systems.


2013 ◽  
Vol 724 ◽  
pp. 553-580 ◽  
Author(s):  
Ivo R. Peters ◽  
Devaraj van der Meer ◽  
J. M. Gordillo

AbstractIn this paper we analyse the impact of a circular disc on a free surface using experiments, potential flow numerical simulations and theory. We focus our attention both on the study of the generation and possible breakup of the splash wave created after the impact and on the calculation of the force on the disc. We have experimentally found that drops are only ejected from the rim located at the top part of the splash – giving rise to what is known as the crown splash – if the impact Weber number exceeds a threshold value ${\mathit{We}}_{crit} \simeq 140$. We explain this threshold by defining a local Bond number $B{o}_{\mathit{tip}} $ based on the rim deceleration and its radius of curvature, with which we show using both numerical simulations and experiments that a crown splash only occurs when $B{o}_{\mathit{tip}} \gtrsim 1$, revealing that the rim disrupts due to a Rayleigh–Taylor instability. Neglecting the effect of air, we show that the flow in the region close to the disc edge possesses a Weber-number-dependent self-similar structure for every Weber number. From this we demonstrate that ${\mathit{Bo}}_{\mathit{tip}} \propto \mathit{We}$, explaining both why the transition to crown splash can be characterized in terms of the impact Weber number and why this transition occurs for $W{e}_{crit} \simeq 140$. Next, including the effect of air, we have developed a theory which predicts the time-varying thickness of the very thin air cushion that is entrapped between the impacting solid and the liquid. Our analysis reveals that gas critically affects the velocity of propagation of the splash wave as well as the time-varying force on the disc, ${F}_{D} $. The existence of the air layer also limits the range of times in which the self-similar solution is valid and, accordingly, the maximum deceleration experienced by the liquid rim, that sets the length scale of the splash drops ejected when $We\gt {\mathit{We}}_{crit} $.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Yujia Zhang ◽  
Peiqing Liu ◽  
Qiulin Qu ◽  
Fanglin Liu ◽  
Ramesh K. Agarwal

Abstract The energy conversion is proposed to analyze the effects of liquid properties on the formation of an ejecta sheet, prompt splashing, and crown evolution. The incompressible laminar Navier–Stokes equations coupled with the volume-of-fluid (VOF) model are solved numerically in an axisymmetric frame to simulate the impact process. Based on the energy conversion curves and liquid–gas interface shapes, the Weber number is shown to be the main dimensionless quantity controlling the impact process, especially with regard to crown evolution. However, the Reynolds number does have some influence on the drop impact process, especially during the stage of ejecta sheet formation and prompt splashing. By studying energy conversion during the impact process, the crown evolution is shown to be accelerated significantly with decreasing Weber number, but is hardly affected by the Reynolds number. A linear relation is found between the time to the moment of crown stabilization (when the crown height reaches its maximum value) and the square root of the Weber number. The relationship between the Weber number and the energy distribution at the moment of crown stabilization is also studied.


Sign in / Sign up

Export Citation Format

Share Document