scholarly journals Hypoxic training as a way of the human brain protection from the damaging effects of oxygen deficiency

2018 ◽  
Vol 9 (4) ◽  
pp. 33-41
Author(s):  
A. Yu. Eroshenko ◽  
N. V. Kochubejnik ◽  
D. V. Shatov ◽  
S. M. Groshilin ◽  
V. N. Sklyarov ◽  
...  

Objective:to evaluate the possibilities of normobaric hypoxic training (NHT) in the human brain protection from the damaging effects of oxygen defciency.Materials and methods:the study involved 18 men, aged 19-23 years, who underwent NHT: 15 treatments daily 2-hour stay in a hypoxic gas medium (HGM) having an oxygen content 15.0 ± 0.5% (HGM-15). Beforestarting the NHT (I phase), and afer 1-2 days afer its closure (II stage) were carried hypoxic samples (staying in HGM-15) before and during which the subjects were recorded the electroencephalogram (EEG) and mental performance were evaluated (the «Route» test).Results:when the frst hypoxic test was carried out, the subjects had a decrease in the alpha-rhythm index (on average by 10-15 %, p = 0.013) and its amplitude (by 10-12 %, p = 0.044) compared to the usual environmental conditions. At the same time, the share of low-amplitude slow waves increased (p = 0.019). Te integral indicator of the «Route» test during staying of the subjects in the HGM-15 decreased on average by 18% compared to the usual conditions (p <0.001). Te obtained data testifed about negative influence of staying in HGM -15 on the functioning of the higher parts of the brain. Afer carrying out NHT, all subjects showed a signifcant reduction in the negative reactions of spontaneous EEG to hypoxia: when the sample was repeated, the alpha-rhythm index and its amplitude did not change signifcantly (in comparison with air breathing), signs of excessive slow wave activity were absent. Reduction of the integral indicator of mental performance when staying in HGM-15 amounted to an average of only 6%.Conclusions:NHT in the developed regime is an effective means of the brain protection from the damaging effect of oxygen defciency and can be used in the system of physiological training of specialists to perform tasks of activity in conditions of reduced partial pressure of oxygen.

Author(s):  
M.N. Ustinin ◽  
S.D. Rykunov ◽  
A.I. Boyko ◽  
O.A. Maslova ◽  
K.D. Walton ◽  
...  

New method for the magnetic encephalography data analysis was proposed. The method transforms multichannel time series into the spatial structure of the human brain activity. In this paper we further develop this method to determine the dominant direction of the electrical sources of brain activity at each node of the calculation grid. We have considered the experimental data, obtained with three 275-channel magnetic encephalographs in New York University, McGill University and Montreal University. The human alpha rhythm phenomenon was selected as a model object. Magnetic encephalograms of the brain spontaneous activity were registered for 5-7 minutes in magnetically shielded room. Detailed multichannel spectra were obtained by the Fourier transform of the whole time series. For all spectral components, the inverse problem was solved in elementary current dipole model and the functional structure of the brain activity was calculated in the frequency band 8-12 Hz. In order to estimate the local activity direction, at the each node of calculation grid the vector of the inverse problem solution was selected, having the maximal spectral power. So, the 3D-map of the brain activity vector field was produced – the directional functional tomogram. Such maps were generated for 15 subjects and some common patterns were revealed in the directions of the alpha rhythm elementary sources. The proposed method can be used to study the local properties of the brain activity in any spectral band and in any brain compartment.


2021 ◽  
Vol 118 (37) ◽  
pp. e2100652118
Author(s):  
Alejandra Sel ◽  
Lennart Verhagen ◽  
Katharina Angerer ◽  
Raluca David ◽  
Miriam C. Klein-Flügge ◽  
...  

The origins of oscillatory activity in the brain are currently debated, but common to many hypotheses is the notion that they reflect interactions between brain areas. Here, we examine this possibility by manipulating the strength of coupling between two human brain regions, ventral premotor cortex (PMv) and primary motor cortex (M1), and examine the impact on oscillatory activity in the motor system measurable in the electroencephalogram. We either increased or decreased the strength of coupling while holding the impact on each component area in the pathway constant. This was achieved by stimulating PMv and M1 with paired pulses of transcranial magnetic stimulation using two different patterns, only one of which increases the influence exerted by PMv over M1. While the stimulation protocols differed in their temporal patterning, they were comprised of identical numbers of pulses to M1 and PMv. We measured the impact on activity in alpha, beta, and theta bands during a motor task in which participants either made a preprepared action (Go) or withheld it (No-Go). Augmenting cortical connectivity between PMv and M1, by evoking synchronous pre- and postsynaptic activity in the PMv–M1 pathway, enhanced oscillatory beta and theta rhythms in Go and No-Go trials, respectively. Little change was observed in the alpha rhythm. By contrast, diminishing the influence of PMv over M1 decreased oscillatory beta and theta rhythms in Go and No-Go trials, respectively. This suggests that corticocortical communication frequencies in the PMv–M1 pathway can be manipulated following Hebbian spike-timing–dependent plasticity.


Author(s):  
С.Д. Рыкунов ◽  
S.D. Rykunov

The new methodology was developed to calculate spectral characteristics of various compartments of the human brain. This technology combines two types of the spatial data: 1) functional tomogram presenting spatial distribution of the electric sources and 2) anatomical structure of the brain as determined by the magnetic resonance imaging. Presently the functional tomogram is calculated from the multichannel magnetoencephalograms. In the functional tomogram, unique spatial location corresponds to each elementary oscillation. Spatial structure of the brain compartment is generated by the segmentation of magnetic resonance image. The partial spectrum is composed by the selection of frequencies, belonging to this compartment. The software implementing this methodology was developed and applied to partial spectral analysis of the alpha rhythm.


Author(s):  
Preecha Yupapin ◽  
Amiri I. S. ◽  
Ali J. ◽  
Ponsuwancharoen N. ◽  
Youplao P.

The sequence of the human brain can be configured by the originated strongly coupling fields to a pair of the ionic substances(bio-cells) within the microtubules. From which the dipole oscillation begins and transports by the strong trapped force, which is known as a tweezer. The tweezers are the trapped polaritons, which are the electrical charges with information. They will be collected on the brain surface and transport via the liquid core guide wave, which is the mixture of blood content and water. The oscillation frequency is called the Rabi frequency, is formed by the two-level atom system. Our aim will manipulate the Rabi oscillation by an on-chip device, where the quantum outputs may help to form the realistic human brain function for humanoid robotic applications.


Author(s):  
Sally M. Essawy ◽  
Basil Kamel ◽  
Mohamed S. Elsawy

Some buildings hold certain qualities of space design similar to those originated from nature in harmony with its surroundings. These buildings, mostly associated with religious beliefs and practices, allow for human comfort and a unique state of mind. This paper aims to verify such effect on the human brain. It concentrates on measuring brain waves when the user is located in several spots (coordinates) in some of these buildings. Several experiments are conducted on selected case studies to identify whether certain buildings affect the brain wave frequencies of their users or not. These are measured in terms of Brain Wave Frequency Charts through EEG Device. The changes identified on the brain were then translated into a brain diagram that reflects the spiritual experience all through the trip inside the selected buildings. This could then be used in architecture to enhance such unique quality.


Author(s):  
Henrik Hogh-Olesen

Chapter 7 takes the investigation of the aesthetic impulse into the human brain to understand, first, why only we—and not our closest relatives among the primates—express ourselves aesthetically; and second, how the brain reacts when presented with aesthetic material. Brain scans are less useful when you are interested in the Why of aesthetic behavior rather than the How. Nevertheless, some brain studies have been ground-breaking, and neuroaesthetics offers a pivotal argument for the key function of the aesthetic impulse in human lives; it shows us that the brain’s reward circuit is activated when we are presented with aesthetic objects and stimuli. For why reward a perception or an activity that is evolutionarily useless and worthless in relation to human existence?


2021 ◽  
Vol 16 ◽  
pp. 263310552110187
Author(s):  
Christopher D Link

Numerous studies have identified microbial sequences or epitopes in pathological and non-pathological human brain samples. It has not been resolved if these observations are artifactual, or truly represent population of the brain by microbes. Given the tempting speculation that resident microbes could play a role in the many neuropsychiatric and neurodegenerative diseases that currently lack clear etiologies, there is a strong motivation to determine the “ground truth” of microbial existence in living brains. Here I argue that the evidence for the presence of microbes in diseased brains is quite strong, but a compelling demonstration of resident microbes in the healthy human brain remains to be done. Dedicated animal models studies may be required to determine if there is indeed a “brain microbiome.”


2020 ◽  
Vol 31 (8) ◽  
pp. 803-816
Author(s):  
Umberto di Porzio

AbstractThe environment increased complexity required more neural functions to develop in the hominin brains, and the hominins adapted to the complexity by developing a bigger brain with a greater interconnection between its parts. Thus, complex environments drove the growth of the brain. In about two million years during hominin evolution, the brain increased three folds in size, one of the largest and most complex amongst mammals, relative to body size. The size increase has led to anatomical reorganization and complex neuronal interactions in a relatively small skull. At birth, the human brain is only about 20% of its adult size. That facilitates the passage through the birth canal. Therefore, the human brain, especially cortex, develops postnatally in a rich stimulating environment with continuous brain wiring and rewiring and insertion of billions of new neurons. One of the consequence is that in the newborn brain, neuroplasticity is always turned “on” and it remains active throughout life, which gave humans the ability to adapt to complex and often hostile environments, integrate external experiences, solve problems, elaborate abstract ideas and innovative technologies, store a lot of information. Besides, hominins acquired unique abilities as music, language, and intense social cooperation. Overwhelming ecological, social, and cultural challenges have made the human brain so unique. From these events, as well as the molecular genetic changes that took place in those million years, under the pressure of natural selection, derive the distinctive cognitive abilities that have led us to complex social organizations and made our species successful.


2021 ◽  
Vol 22 (15) ◽  
pp. 8325
Author(s):  
Paola Zanfardino ◽  
Stefano Doccini ◽  
Filippo M. Santorelli ◽  
Vittoria Petruzzella

Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as ‘mitoexome’, ‘mitoproteome’ and ‘mitointeractome’ have entered the field of ‘mitochondrial medicine’. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


Sign in / Sign up

Export Citation Format

Share Document