scholarly journals Patient-Level Prediction of Cardio-Cerebrovascular Events in Hypertension Using Nationwide Claims Data (Preprint)

2018 ◽  
Author(s):  
Jaram Park ◽  
Jeong-Whun Kim ◽  
Borim Ryu ◽  
Eunyoung Heo ◽  
Se Young Jung ◽  
...  

BACKGROUND Prevention and management of chronic diseases are the main goals of national health maintenance programs. Previously widely used screening tools, such as Health Risk Appraisal, are restricted in their achievement this goal due to their limitations, such as static characteristics, accessibility, and generalizability. Hypertension is one of the most important chronic diseases requiring management via the nationwide health maintenance program, and health care providers should inform patients about their risks of a complication caused by hypertension. OBJECTIVE Our goal was to develop and compare machine learning models predicting high-risk vascular diseases for hypertensive patients so that they can manage their blood pressure based on their risk level. METHODS We used a 12-year longitudinal dataset of the nationwide sample cohort, which contains the data of 514,866 patients and allows tracking of patients’ medical history across all health care providers in Korea (N=51,920). To ensure the generalizability of our models, we conducted an external validation using another national sample cohort dataset, comprising one million different patients, published by the National Health Insurance Service. From each dataset, we obtained the data of 74,535 and 59,738 patients with essential hypertension and developed machine learning models for predicting cardiovascular and cerebrovascular events. Six machine learning models were developed and compared for evaluating performances based on validation metrics. RESULTS Machine learning algorithms enabled us to detect high-risk patients based on their medical history. The long short-term memory-based algorithm outperformed in the within test (F1-score=.772, external test F1-score=.613), and the random forest-based algorithm of risk prediction showed better performance over other machine learning algorithms concerning generalization (within test F1-score=.757, external test F1-score=.705). Concerning the number of features, in the within test, the long short-term memory-based algorithms outperformed regardless of the number of features. However, in the external test, the random forest-based algorithm was the best, irrespective of the number of features it encountered. CONCLUSIONS We developed and compared machine learning models predicting high-risk vascular diseases in hypertensive patients so that they may manage their blood pressure based on their risk level. By relying on the prediction model, a government can predict high-risk patients at the nationwide level and establish health care policies in advance.

2020 ◽  
Author(s):  
Mahdieh Montazeri ◽  
Roxana ZahediNasab ◽  
Ali Farahani ◽  
Hadis Mohseni ◽  
Fahimeh Ghasemian

BACKGROUND Accurate and timely diagnosis and effective prognosis of the disease is important to provide the best possible care for patients with COVID-19 and reduce the burden on the health care system. Machine learning methods can play a vital role in the diagnosis of COVID-19 by processing chest x-ray images. OBJECTIVE The aim of this study is to summarize information on the use of intelligent models for the diagnosis and prognosis of COVID-19 to help with early and timely diagnosis, minimize prolonged diagnosis, and improve overall health care. METHODS A systematic search of databases, including PubMed, Web of Science, IEEE, ProQuest, Scopus, bioRxiv, and medRxiv, was performed for COVID-19–related studies published up to May 24, 2020. This study was performed in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. All original research articles describing the application of image processing for the prediction and diagnosis of COVID-19 were considered in the analysis. Two reviewers independently assessed the published papers to determine eligibility for inclusion in the analysis. Risk of bias was evaluated using the Prediction Model Risk of Bias Assessment Tool. RESULTS Of the 629 articles retrieved, 44 articles were included. We identified 4 prognosis models for calculating prediction of disease severity and estimation of confinement time for individual patients, and 40 diagnostic models for detecting COVID-19 from normal or other pneumonias. Most included studies used deep learning methods based on convolutional neural networks, which have been widely used as a classification algorithm. The most frequently reported predictors of prognosis in patients with COVID-19 included age, computed tomography data, gender, comorbidities, symptoms, and laboratory findings. Deep convolutional neural networks obtained better results compared with non–neural network–based methods. Moreover, all of the models were found to be at high risk of bias due to the lack of information about the study population, intended groups, and inappropriate reporting. CONCLUSIONS Machine learning models used for the diagnosis and prognosis of COVID-19 showed excellent discriminative performance. However, these models were at high risk of bias, because of various reasons such as inadequate information about study participants, randomization process, and the lack of external validation, which may have resulted in the optimistic reporting of these models. Hence, our findings do not recommend any of the current models to be used in practice for the diagnosis and prognosis of COVID-19.


Author(s):  
Jiancheng Ye ◽  
Liang Yao ◽  
Jiahong Shen ◽  
Rethavathi Janarthanam ◽  
Yuan Luo

Abstract Background Diabetes mellitus is a prevalent metabolic disease characterized by chronic hyperglycemia. The avalanche of healthcare data is accelerating precision and personalized medicine. Artificial intelligence and algorithm-based approaches are becoming more and more vital to support clinical decision-making. These methods are able to augment health care providers by taking away some of their routine work and enabling them to focus on critical issues. However, few studies have used predictive modeling to uncover associations between comorbidities in ICU patients and diabetes. This study aimed to use Unified Medical Language System (UMLS) resources, involving machine learning and natural language processing (NLP) approaches to predict the risk of mortality. Methods We conducted a secondary analysis of Medical Information Mart for Intensive Care III (MIMIC-III) data. Different machine learning modeling and NLP approaches were applied. Domain knowledge in health care is built on the dictionaries created by experts who defined the clinical terminologies such as medications or clinical symptoms. This knowledge is valuable to identify information from text notes that assert a certain disease. Knowledge-guided models can automatically extract knowledge from clinical notes or biomedical literature that contains conceptual entities and relationships among these various concepts. Mortality classification was based on the combination of knowledge-guided features and rules. UMLS entity embedding and convolutional neural network (CNN) with word embeddings were applied. Concept Unique Identifiers (CUIs) with entity embeddings were utilized to build clinical text representations. Results The best configuration of the employed machine learning models yielded a competitive AUC of 0.97. Machine learning models along with NLP of clinical notes are promising to assist health care providers to predict the risk of mortality of critically ill patients. Conclusion UMLS resources and clinical notes are powerful and important tools to predict mortality in diabetic patients in the critical care setting. The knowledge-guided CNN model is effective (AUC = 0.97) for learning hidden features.


2020 ◽  
Author(s):  
Somya D. Mohanty ◽  
Deborah Lekan ◽  
Thomas P. McCoy ◽  
Marjorie Jenkins ◽  
Prashanti Manda

AbstractHealthcare costs that can be attributed to unplanned readmissions are staggeringly high and negatively impact health and wellness of patients. In the United States, hospital systems and care providers have strong financial motivations to reduce readmissions in accordance with several government guidelines. One of the critical steps to reducing readmissions is to recognize the factors that lead to readmission and correspondingly identify at-risk patients based on these factors. The availability of large volumes of electronic health care records make it possible to develop and deploy automated machine learning models that can predict unplanned readmissions and pinpoint the most important factors of readmission risk. While hospital readmission is an undesirable outcome for any patient, it is more so for medically frail patients. Here, we develop and compare four machine learning models (Random Forest, XGBoost, CatBoost, and Logistic Regression) for predicting 30-day unplanned readmission for patients deemed frail (Age ≥ 50). Variables that indicate frailty, comorbidities, high risk medication use, demographic, hospital and insurance were incorporated in the models for prediction of unplanned 30-day readmission. Our findings indicate that CatBoost outperforms the other three models (AUC 0.80) and prior work in this area. We find that constructs of frailty, certain categories of high risk medications, and comorbidity are all strong predictors of readmission for elderly patients.


2021 ◽  
pp. 1-15
Author(s):  
O. Basturk ◽  
C. Cetek

ABSTRACT In this study, prediction of aircraft Estimated Time of Arrival (ETA) is proposed using machine learning algorithms. Accurate prediction of ETA is important for management of delay and air traffic flow, runway assignment, gate assignment, collaborative decision making (CDM), coordination of ground personnel and equipment, and optimisation of arrival sequence etc. Machine learning is able to learn from experience and make predictions with weak assumptions or no assumptions at all. In the proposed approach, general flight information, trajectory data and weather data were obtained from different sources in various formats. Raw data were converted to tidy data and inserted into a relational database. To obtain the features for training the machine learning models, the data were explored, cleaned and transformed into convenient features. New features were also derived from the available data. Random forests and deep neural networks were used to train the machine learning models. Both models can predict the ETA with a mean absolute error (MAE) less than 6min after departure, and less than 3min after terminal manoeuvring area (TMA) entrance. Additionally, a web application was developed to dynamically predict the ETA using proposed models.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 252
Author(s):  
Laura M. Bergner ◽  
Nardus Mollentze ◽  
Richard J. Orton ◽  
Carlos Tello ◽  
Alice Broos ◽  
...  

The contemporary surge in metagenomic sequencing has transformed knowledge of viral diversity in wildlife. However, evaluating which newly discovered viruses pose sufficient risk of infecting humans to merit detailed laboratory characterization and surveillance remains largely speculative. Machine learning algorithms have been developed to address this imbalance by ranking the relative likelihood of human infection based on viral genome sequences, but are not yet routinely applied to viruses at the time of their discovery. Here, we characterized viral genomes detected through metagenomic sequencing of feces and saliva from common vampire bats (Desmodus rotundus) and used these data as a case study in evaluating zoonotic potential using molecular sequencing data. Of 58 detected viral families, including 17 which infect mammals, the only known zoonosis detected was rabies virus; however, additional genomes were detected from the families Hepeviridae, Coronaviridae, Reoviridae, Astroviridae and Picornaviridae, all of which contain human-infecting species. In phylogenetic analyses, novel vampire bat viruses most frequently grouped with other bat viruses that are not currently known to infect humans. In agreement, machine learning models built from only phylogenetic information ranked all novel viruses similarly, yielding little insight into zoonotic potential. In contrast, genome composition-based machine learning models estimated different levels of zoonotic potential, even for closely related viruses, categorizing one out of four detected hepeviruses and two out of three picornaviruses as having high priority for further research. We highlight the value of evaluating zoonotic potential beyond ad hoc consideration of phylogeny and provide surveillance recommendations for novel viruses in a wildlife host which has frequent contact with humans and domestic animals.


2021 ◽  
Author(s):  
Alejandro Celemín ◽  
Diego A. Estupiñan ◽  
Ricardo Nieto

Abstract Electrical Submersible Pumps reliability and run-life analysis has been extensively studied since its development. Current machine learning algorithms allow to correlate operational conditions to ESP run-life in order to generate predictions for active and new wells. Four machine learning models are compared to a linear proportional hazards model, used as a baseline for comparison purposes. Proper accuracy metrics for survival analysis problems are calculated on run-life predictions vs. actual values over training and validation data subsets. Results demonstrate that the baseline model is able to produce more consistent predictions with a slight reduction in its accuracy, compared to current machine learning models for small datasets. This study demonstrates that the quality of the date and it pre-processing supports the current shift from model-centric to data-centric approach to machine and deep learning problems.


Author(s):  
Pratyush Kaware

In this paper a cost-effective sensor has been implemented to read finger bend signals, by attaching the sensor to a finger, so as to classify them based on the degree of bent as well as the joint about which the finger was being bent. This was done by testing with various machine learning algorithms to get the most accurate and consistent classifier. Finally, we found that Support Vector Machine was the best algorithm suited to classify our data, using we were able predict live state of a finger, i.e., the degree of bent and the joints involved. The live voltage values from the sensor were transmitted using a NodeMCU micro-controller which were converted to digital and uploaded on a database for analysis.


2021 ◽  
Vol 39 (28_suppl) ◽  
pp. 330-330
Author(s):  
Teja Ganta ◽  
Stephanie Lehrman ◽  
Rachel Pappalardo ◽  
Madalene Crow ◽  
Meagan Will ◽  
...  

330 Background: Machine learning models are well-positioned to transform cancer care delivery by providing oncologists with more accurate or accessible information to augment clinical decisions. Many machine learning projects, however, focus on model accuracy without considering the impact of using the model in real-world settings and rarely carry forward to clinical implementation. We present a human-centered systems engineering approach to address clinical problems with workflow interventions utilizing machine learning algorithms. Methods: We aimed to develop a mortality predictive tool, using a Random Forest algorithm, to identify oncology patients at high risk of death within 30 days to move advance care planning (ACP) discussions earlier in the illness trajectory. First, a project sponsor defined the clinical need and requirements of an intervention. The data scientists developed the predictive algorithm using data available in the electronic health record (EHR). A multidisciplinary workgroup was assembled including oncology physicians, advanced practice providers, nurses, social workers, chaplain, clinical informaticists, and data scientists. Meeting bi-monthly, the group utilized human-centered design (HCD) methods to understand clinical workflows and identify points of intervention. The workgroup completed a workflow redesign workshop, a 90-minute facilitated group discussion, to integrate the model in a future state workflow. An EHR (Epic) analyst built the user interface to support the intervention per the group’s requirements. The workflow was piloted in thoracic oncology and bone marrow transplant with plans to scale to other cancer clinics. Results: Our predictive model performance on test data was acceptable (sensitivity 75%, specificity 75%, F-1 score 0.71, AUC 0.82). The workgroup identified a “quality of life coordinator” who: reviews an EHR report of patients scheduled in the upcoming 7 days who have a high risk of 30-day mortality; works with the oncology team to determine ACP clinical appropriateness; documents the need for ACP; identifies potential referrals to supportive oncology, social work, or chaplain; and coordinates the oncology appointment. The oncologist receives a reminder on the day of the patient’s scheduled visit. Conclusions: This workgroup is a viable approach that can be replicated at institutions to address clinical needs and realize the full potential of machine learning models in healthcare. The next steps for this project are to address end-user feedback from the pilot, expand the intervention to other cancer disease groups, and track clinical metrics.


2021 ◽  
Vol 12 (02) ◽  
pp. 372-382
Author(s):  
Christine Xia Wu ◽  
Ernest Suresh ◽  
Francis Wei Loong Phng ◽  
Kai Pik Tai ◽  
Janthorn Pakdeethai ◽  
...  

Abstract Objective To develop a risk score for the real-time prediction of readmissions for patients using patient specific information captured in electronic medical records (EMR) in Singapore to enable the prospective identification of high-risk patients for enrolment in timely interventions. Methods Machine-learning models were built to estimate the probability of a patient being readmitted within 30 days of discharge. EMR of 25,472 patients discharged from the medicine department at Ng Teng Fong General Hospital between January 2016 and December 2016 were extracted retrospectively for training and internal validation of the models. We developed and implemented a real-time 30-day readmission risk score generation in the EMR system, which enabled the flagging of high-risk patients to care providers in the hospital. Based on the daily high-risk patient list, the various interfaces and flow sheets in the EMR were configured according to the information needs of the various stakeholders such as the inpatient medical, nursing, case management, emergency department, and postdischarge care teams. Results Overall, the machine-learning models achieved good performance with area under the receiver operating characteristic ranging from 0.77 to 0.81. The models were used to proactively identify and attend to patients who are at risk of readmission before an actual readmission occurs. This approach successfully reduced the 30-day readmission rate for patients admitted to the medicine department from 11.7% in 2017 to 10.1% in 2019 (p < 0.01) after risk adjustment. Conclusion Machine-learning models can be deployed in the EMR system to provide real-time forecasts for a more comprehensive outlook in the aspects of decision-making and care provision.


2021 ◽  
Vol 10 (1) ◽  
pp. 99
Author(s):  
Sajad Yousefi

Introduction: Heart disease is often associated with conditions such as clogged arteries due to the sediment accumulation which causes chest pain and heart attack. Many people die due to the heart disease annually. Most countries have a shortage of cardiovascular specialists and thus, a significant percentage of misdiagnosis occurs. Hence, predicting this disease is a serious issue. Using machine learning models performed on multidimensional dataset, this article aims to find the most efficient and accurate machine learning models for disease prediction.Material and Methods: Several algorithms were utilized to predict heart disease among which Decision Tree, Random Forest and KNN supervised machine learning are highly mentioned. The algorithms are applied to the dataset taken from the UCI repository including 294 samples. The dataset includes heart disease features. To enhance the algorithm performance, these features are analyzed, the feature importance scores and cross validation are considered.Results: The algorithm performance is compared with each other, so that performance based on ROC curve and some criteria such as accuracy, precision, sensitivity and F1 score were evaluated for each model. As a result of evaluation, Accuracy, AUC ROC are 83% and 99% respectively for Decision Tree algorithm. Logistic Regression algorithm with accuracy and AUC ROC are 88% and 91% respectively has better performance than other algorithms. Therefore, these techniques can be useful for physicians to predict heart disease patients and prescribe them correctly.Conclusion: Machine learning technique can be used in medicine for analyzing the related data collections to a disease and its prediction. The area under the ROC curve and evaluating criteria related to a number of classifying algorithms of machine learning to evaluate heart disease and indeed, the prediction of heart disease is compared to determine the most appropriate classification. As a result of evaluation, better performance was observed in both Decision Tree and Logistic Regression models.


Sign in / Sign up

Export Citation Format

Share Document