scholarly journals Study on Effect of Superplasticizer on GGBS Blended Geopolymer Concrete

2019 ◽  
Vol 2 (2) ◽  
pp. p45
Author(s):  
Vahini M. ◽  
K. Manjunatha ◽  
Venkatesh ◽  
Basappa Meti

Geopolymer concrete is an alternate to conventional concrete with reduced carbon emission, embodied energy and global warming potential and transforming waste product into an useful material. Geopolymer concrete is produced by mixing highly alkaline activator solution with alumino silicate source materials. Geopolymer concrete is highly viscous or sticky in nature, to overcome this drawback, an attempt has been made to study the effect of naphthalene based superplasticizer on geopolymer concrete blended with GGBS. Fly ash was replaced by GGBS at 20% increment levels, keeping a constant superplasticizer dosage at 3% by weight of binding material. Workability and strength characteristics were compared with those of geopolymer concrete blended with GGBS without superplasticizer. Up to certain replacement level of fly ash with GGBS, results in decrease of strength parameters with increase in workability, further replacement results in increase of strength with reduced workability with the addition of superplasticizer.

2021 ◽  
Vol 11 (15) ◽  
pp. 6740
Author(s):  
Rana Muhammad Waqas ◽  
Faheem Butt

Geopolymer concrete, also known as an earth-friendly concrete, has been under continuous study due to its environmental benefits and a sustainable alternative to conventional concrete construction. The supplies of many source materials, such as fly ash (FA) or slag (SG), to produce geopolymer concrete (GPC) may be limited; however, quarry rock dust (QRD) wastes (limestone, dolomite, or silica powders) formed by crushing rocks appear virtually endless. Although significant experimental research has been carried out on GPC, with a major focus on the mix design development, rheological, durability, and mechanical properties of the GPC mixes; still the information available on the structural behavior of GPC is rather limited. This has implications in extending GPC application from a laboratory-based technology to an at-site product. This study investigates the structural behavior of quarry-rock-dust-incorporated fiber-reinforced GPC columns under concentric and eccentric loading. In this study, a total of 20 columns with 200 mm square cross-section and 1000 mm height were tested. The FA and SG were used as source materials to produce GPC mixtures. The QRD was incorporated as a partial replacement (20%) of SG. The conventional concrete (CC) columns were prepared as the reference specimens. The effect of incorporating quarry rock dust as a replacement of SG, steel fibers, and loading conditions (concentric and eccentric loading) on the structural behavior of GPC columns were studied. The test results revealed that quarry rock dust is an adequate material that can be used as a source material in GPC to manufacture structural concrete members with satisfactory performance. The general performance of the GPC columns incorporating QRD (20%) is observed to be similar to that of GPC columns (without QRD) and CC columns. The addition of steel fibers considerably improves the loading capacity, ductility, and axial load–displacement behavior of the tested columns. The load capacities of fiber-reinforced GPC columns were about 5–7% greater in comparison to the CC columns. The spalling of concrete cover at failure was detected in all plain GPC columns, whereas the failure mode of all fiber-reinforced GPC columns is characterized with surface cracking leading to disintegration of concrete cover.


2015 ◽  
Vol 764-765 ◽  
pp. 1090-1094
Author(s):  
Tippabhotla D. Gunneswara Rao ◽  
P. Alfrite ◽  
G. Mallikarjuna Rao ◽  
Mudimby Andal

Geopolymer concrete (GPC) is a new construction material in which cement is totally replaced by calcined source materials fly ash and GGBS. Geopolymer utilization reduces or eliminates the use of cement whose production produces a lot of carbon dioxide. Usually fly ash as a source material for the geopolymer. The behavior of GPC has to be studied in detail to check its suitability in construction industry. In the present study, the fracture behavior of geopolymer concrete is investigated and compared. Three-point bending test on notched prisms with a/d (notch depth/beam depth) ratios 0.1, 0.15, 0.2 are considered. The values of Critical load, fracture toughness, fracture energy and ductility are presented. The test results of total of 27prisms, 6cubes, 18 cylinders with M30 grade geopolymer concrete and conventional concrete (OPC) of same grade are presented in this paper. The test results indicated that the characteristic length of GPC is about 25% more than that of conventional concrete.


2019 ◽  
Vol 821 ◽  
pp. 472-478
Author(s):  
Shwan H. Said

Ordinary Portland cement (OPC) is the essential binding material to produce the OPC concrete. Production of OPC is recently attaining a rate of 2.6 billion ton per year worldwide and growing 5% annually. OPC contributes at rate of 5 – 8% of human-worldwide CO2 emissions which are the greenhouse gases pollute the atmosphere. Geopolymer concrete (GPC) is a creative, sustainable, economical and eco-friendly material for construction industry, which is a suitable alternative to the OPC concrete, able to extensively curb the CO2 emissions. To prepare this kind of concrete, a combination of pozzolanic material such as fly ash (FA), and/or ground granulated blast furnace slag (GGBS) rich with silica and alumina can react with alkaline activator solution producing aluminosilicate gel, acting as a superb binding material for fine and coarse aggregates under special conditions of curing. This study highlights the recent explorations on geopolymer mortars and concrete. Effect of chemicals such as sulphuric acid, effect of fly ash partial replacement with different binding materials, effect of concentration of alkaline activator solutions and the effect of temperature and time of curing variation have been discussed on durability and mechanical properties of geopolymer concrete. Results have shown superb resistance of geopolymer concrete to the detrimental effects of sulphuric acid on weight and compressive strength. Furthermore, fly ash partial replacement with silica fume, OPC or GGBS, or nanosilica inclusion in GPC has a positive effect on the GPC properties. Finally, using high concentration of sodium hydroxide has a detrimental effect on GPC properties.


2019 ◽  
Vol 8 (4) ◽  
pp. 12142-12146

Geopolymer concrete is one of the major developments in recent years resulting in utilization of fly ash in huge quantities and eventually reducing cement consumption and ultimately reducing emission of greenhouse gases.The geopolymer concrete is produced by using activated fly ash as binder material instead of cement. Geopolymer concrete accomplishes great strength and looks similar to conventional concrete. Recycled coarse aggregate (RCA )which is coming from demolition of construction of old and existing structures has been used in this study. The durability property; acid attack resistance with partial replacement of coarse aggregate by recycled aggregate in geopolymer and conventional concrete for the different composition such as 10, 20, 30 and 40percentage for a period of 15, 45,75 and 105 days has been evaluated. From the results it was observed that in both natural and recycled aggregate of Geopolymer concrete is highly resistant to acids such as sulphuric acid and hydrochloric acid compared to conventional concrete of respective aggregates.


2019 ◽  
Vol 2 (2) ◽  
pp. 65
Author(s):  
Purwanto P. ◽  
Himawan Indarto

Portland cement production process which is the conventional concrete constituent materials always has an impact on producing carbon dioxide (CO2) which will damage the environment. To maintain the continuity of development, while maintaining the environment, Portland cement substitution can be made with more environmentally friendly materials, namely fly ash. The substitution of fly ash material in concrete is known as geopolymer concrete. Fly ash is one of the industrial waste materials that can be used as geopolymer material. Fly ash is mineral residue in fine grains produced from coal combustion which is mashed at power plant power plant [15]. Many cement factories have used fly ash as mixture in cement, namely Portland Pozzolan Cement. Because fly ash contains SiO2, Al2O3, P2O3, and Fe2O3 which are quite high, so fly ash is considered capable of replacing cement completely.This study aims to obtain geopolymer concrete which has the best workability so that it is easy to work on (Workable Geopolymer Concrete / Self Compacting Geopolymer Concrete) and obtain the basic characteristics of geopolymer concrete material in the form of good workability and compressive strength. In this study, geopolymer concrete is composed of coarse aggregate, fine aggregate, fly ash type F, and activators in the form of NaOH and Na2SiO3 Be52. In making geopolymer concrete, additional ingredients such as superplastizer are added to increase the workability of geopolymer concrete. From this research, the results of concrete compressive strength above fc' 25 MPa and horizontal slump values reached 60 to 80 centimeters.


2012 ◽  
Vol 3 (7) ◽  
pp. 207-210 ◽  
Author(s):  
KAMLESH .C SHAH ◽  
◽  
PROF. A. R. PARIKH PROF. A. R. PARIKH ◽  
K.J.PARMAR K.J.PARMAR

2013 ◽  
Vol 686 ◽  
pp. 227-233 ◽  
Author(s):  
Mustafa Al Bakri Abdullah Mohd ◽  
Liyana Jamaludin ◽  
Kamarudin Hussin ◽  
Mohammed Binhussain ◽  
Che Mohd Ruzaidi Ghazali ◽  
...  

Geopolymer is cementitious binders that do not require the presence of ordinary Portland cement (OPC). Fly ash with geopolymer formulations prepared with mixing alumino-silicate with the alkaline activator solution has been applied as protective coating material that suitable for high temperature applications such as fire resistant panel. Geopolymer coating samples were cured at 70 °C for 24 hours before sintered using temperatures range from 600 °C to 1500 °C in order to increase strength and improve thermal properties. Curing conditions also have a significant effect on the development of mechanical strength in most cementitious systems. The chemical compositions, microstructure and FTIR were studied. Geopolymer coating samples cures to a glassy texture and effectively used to create a resistant surface. Fly ash geopolymer coating was improved the compressive strength of the coatings materials as high as 40 MPa. This technology develop a geopolymeric mix design that superior use as cementitious coatings with high thermal application.


2021 ◽  
Vol 13 (1) ◽  
pp. 398
Author(s):  
Priyanka Morla ◽  
Rishi Gupta ◽  
Peiman Azarsa ◽  
Ashutosh Sharma

Environmental pollution caused by CO2 releasing from the production of cement is a great challenge for the construction industry and has triggered exploration into more sustainable alternatives. Geopolymer Concrete (GPC) is a potential sustainable solution that does not involve the use of cement as a binder. GPC is produced by mixing the alumino-silicate source materials such as fly-ash with alkali activators such as potassium hydroxide (KOH) and potassium silicate (K2SiO3). Unlike Ordinary Portland Concrete (OPC), the characteristics of GPC depend on the precursor materials and therefore vary for different mixes. Consequently, corrosion behavior needs to be evaluated separately for individual mixes. This has narrowed the scope of existing published work on corrosion behavior of GPC. In this study, GPC and OPC specimens were prepared and exposed to accelerated corrosion exposure. Half-cell potential and linear polarization resistance were used to evaluate the corrosion rate in GPC and OPC. Under accelerated conditions, the corrosion rate of the GPC specimens was between 10 µm/year and 20 µm/year exhibiting a moderate to high rate of corrosion. Meanwhile, the corrosion rate of the OPC specimens was between 40 µm/year and 60 µm/year indicating a very high corrosion activity. It can be concluded that GPC has a higher resistance to chloride-induced corrosion; with a low corrosion rate and lower mass loss percentage, compared to OPC.


2020 ◽  
Vol 184 ◽  
pp. 01080
Author(s):  
A D Sandeep Kumar ◽  
Dinesh Singh ◽  
V Srinivasa Reddy ◽  
Kaveli Jagannath Reddy

This paper presents the mechanism and chemistry behind the geo-polymerization and its application in development of Geo-polymer concrete. In this paper, guidelines to develop a geo-polymer concrete is discussed along with the factors affecting the geopolymerization process in concrete. It is concluded that curing temperature, ratio of alkaline liquids , chemical ratio of silicate and sodium in sodium silicate, alkaline liquids / Si-Al source materials ratio, sodium silicate/ hydroxyl ions ratio, presence of calcium, presence of excess water and Si/Al ratio in source materials have significant effect on the development of geopolymer concrete and its performance.


Author(s):  
Vaibhavi G Galande ◽  
Harshavardhan U Kamble

Geopolymer concrete can be the future of the conventional concrete and it can be used as replacement agent instead of conventional concrete in construction work along with that the GPC is eco friendly in nature as it does not emits CO2 in atmosphere so it is helpful to reduce the Greenhouse effect. The material used for the manufacturing of GPC are Binder’s and Actuators. Birder’s are obtained from the thermal power plant also known as fly ash and actuator consist of the sodium silicate and sodium hydroxide, calcium chloride, sodium thiocyanate, potassium thiocyanate, etc. By combing these acceleration and Binder’s with other concrete material the process of Geopolymeration starts. The objective of these study is to give a detailed review on the geopolymer concrete mix design, compressive behavior, flexural and split tensile behavior and chemical acid resistance when immersed in sopheric acid and nitric acid by using various research paper and the test result difference of conventional concrete and geopolymer concrete. Based on that a review is prepared.


Sign in / Sign up

Export Citation Format

Share Document