scholarly journals ANTIMICROBIAL AND ANTICANCER ACTIVITY OF SILVER NANOPARTICLES FROM EDIBLE MUSHROOM: A REVIEW

Author(s):  
Priyadarshni Karuppiah Chandran ◽  
Mahalingam Pambayan Ulagan

ABSTRACTBiologically inspired nanoparticle synthesis is currently a rapid expanding area of research in nanotechnology. Nanoparticle synthesis utilizing thebioresources such as plants and microbes appears to be a viable, low-cost, and eco-friendly approach. Especially mushrooms can be used for largescalesynthesis of silver nanoparticles as mushroom produces many proteins that reduce the silver nitrate during the biosynthesis. Silver nanoparticlescan be characterized using ultraviolet-visible (UV-VIS) spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction, scanning electronmicroscopy, energy dispersive X-ray, and transmission electron microscope. Silver nanoparticles possess high antibacterial activity since silver indifferent forms has been extensively used as a medicine for curing diseases and promote wound healing. Silver nanoparticles have high surfacespecific area, which will lead to excellent antimicrobial activity as compared with bulk metallic silver. Further, the silver nanoparticles show anticanceractivity against various cell lines such as human epidermoid larynx carcinoma (HEP-2), colon adenocarcinoma (HCT-116), breast adenocarcinoma(MCF-7), liver carcinoma (Hep-G2), and intestinal adenocarcinoma (Caco2) were well documented. This review intends to present green synthesis ofsilver nanoparticles and their application as antimicrobial and anticancer agents.Keywords: Silver nanoparticles, Bioresources, Mushroom, Antimicrobial activity, Anticancer property.

2018 ◽  
Vol 83 (5) ◽  
pp. 515-538 ◽  
Author(s):  
Andreia Corciova ◽  
Bianca Ivanescu

Nanotechnology is one of the most studied domains, and nanoparticle synthesis, especially of silver nanoparticles, has gained special importance due to their properties, biocompatibility and applications. Today, the processes of nanoparticles synthesis tend toward the development of inexpensive, simple, non-toxic and environmentally friendly methods. Thus, the use of plants in the synthesis of silver nanoparticles has attracted considerable interest because biomolecules can act as both reducing and stabilizing agents. This survey aims at discussing the conditions for obtaining silver nanoparticles using plants and their characterization by several methods, such as FTIR and UV?Vis spectroscopy, X-ray diffraction, and scanning and transmission electron microscopy. In addition, it examines some of the most common biological uses of silver nanoparticles: antibacterial, antioxidant and cytotoxic.


Author(s):  
M. Linga Rao ◽  
Bhumi G ◽  
Savithramma N

Silver nanoparticles (SNPs) exhibit tremendous applications in medicine as antimicrobial agent.  The use of different parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals.  In the present study, we report a rapid biosynthesis of silver nanoparticles from aqueous leaf extract of medicinal plant Allamanda cathartica.  The active phytochemicals present in the plant were responsible for the quick reduction of silver ion to metallic silver nanoparticles. The reduced silver nanoparticles were characterized by using UV-Vis spectrophotometry, Scanning Electron Microscope (SEM), Energy Dispersive Analysis of X-ray (EDAX) and Atomic Force Microscopy (AFM).  The spherical shaped silver nanoparticles were observed and it was found to 19-40 nm range of size.  These phytosynthesized SNPs were tested for their antimicrobial activity and it analyzed by measuring the inhibitory zone. A. cathartica aqueous leaf extract of SNPs showed highest toxicity to Pseudomonas followed by Klebsiella, Bacillus and E. coli and lowest toxicity towards Proteus. In fungal species, highest inhibition zone was noted against Rhizopus followed by Curvularia, Aspergillus flavus and Aspergillus niger and minimum inhibition zone was observed against Fusarium species.  These results suggest a promising potential of Indian plant-based green chemistry for production of SNPs for biomedical and nanotechnology applications.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 97
Author(s):  
Suresh V. Chinni ◽  
Subash C. B. Gopinath ◽  
Periasamy Anbu ◽  
Neeraj Kumar Fuloria ◽  
Shivkanya Fuloria ◽  
...  

The present study was planned to characterize and analyze the antimicrobial activity of silver nanoparticles (AgNP) biosynthesized using a Coccinia indica leaf (CIL) ethanolic extract. The present study included the preparation of CIL ethanolic extract using the maceration process, which was further used for AgNP biosynthesis by silver nitrate reduction. Biosynthetic AgNPs were characterized using UV–Visible spectrometry, zeta potential analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) spectrometry. The biogenic AgNP and CIL extracts were further investigated against different bacterial strains for their antimicrobial activity. The surface plasmon resonance (SPR) signal at 425 nm confirmed AgNP formation. The SEM and TEM data revealed the spherical shape of biogenic AgNPs and size in the range of 8 to 48 nm. The EDX results verified the presence of Ag. The AgNPs displayed a zeta potential of −55.46 mV, suggesting mild AgNP stability. Compared to Gram-positive bacteria, the biogenic AgNPs demonstrated high antibacterial potential against Gram-negative bacteria. Based on the results, the current study concluded that AgNPs based on CIL extract have strong antibacterial potential, and it established that AgNP biosynthesis using CIL ethanol extract is an effective process.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1777 ◽  
Author(s):  
Md. Mahiuddin ◽  
Prianka Saha ◽  
Bungo Ochiai

A green synthesis of silver nanoparticles (AgNPs) was conducted using the stem extract of Piper chaba, which is a plant abundantly growing in South and Southeast Asia. The synthesis was carried out at different reaction conditions, i.e., reaction temperature, concentrations of the extract and silver nitrate, reaction time, and pH. The synthesized AgNPs were characterized by visual observation, ultraviolet–visible (UV-vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The characterization results revealed that AgNPs were uniformly dispersed and exhibited a moderate size distribution. They were mostly spherical crystals with face-centered cubic structures and an average size of 19 nm. The FTIR spectroscopy and DLS analysis indicated that the phytochemicals capping the surface of AgNPs stabilize the dispersion through anionic repulsion. The synthesized AgNPs effectively catalyzed the reduction of 4-nitrophenol (4-NP) and degradation of methylene blue (MB) in the presence of sodium borohydride.


2021 ◽  
Vol 68 (4) ◽  
pp. 1008-1015
Author(s):  
Yong Yuan ◽  
Xi-Kun Lu ◽  
Gao-Qi Zhou ◽  
Xiao-Yang Qiu

Three new copper(II) complexes, [Cu(LH)2]Br2 (1), [Cu(LH)2]NCS2 (2), and [Cu(LH)2](NO3)2 (3), where LH is the zwitterionic form of 2-bromo-6-((2-(isopropylamino)ethylimino)methyl)phenol (HL), were synthesized and characterized by elemental analysis, IR and UV-vis spectroscopy. The structures of the complexes were further confirmed by single crystal X-ray structure determination. All compounds are mononuclear copper(II) complexes. The Cu atoms in the complexes are coordinated by two imino N and two phenolate O atoms from two LH ligands, forming square planar coordination. The compounds were assayed for their antimicrobial activities.


2014 ◽  
Vol 2 (4) ◽  
pp. 510-515
Author(s):  
Hala Moustafa Ahmed

The present study mainly focuses of combined action of Nepali hog plum as well as citrate synthesized silver nanoparticles (AgNPs) and Amikacin, as an antibiotic. The synergistic actions of citrate stabilized silver nanoparticles (AgNPs with chem) were compared with that of Nepali hog plum Choerospondia saxillaris (Lapsi) synthesized silver nanoparticles (AgNPs with plant), together with action of antibiotic onselected bacterial strains of Salmonella typhi. The synthesized AgNPs were characterized through UV-Vis spectroscopy, Transmission electronmicroscopy and X-ray diffraction technique. The size of the synthesized silver nanoparticles was measured by Transmission Electron Microscope (TEM) and X-ray diffraction (XRD).DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11127 Int J Appl Sci Biotechnol, Vol. 2(4): 510-515 


2021 ◽  
Vol 68 (1) ◽  
pp. 102-108
Author(s):  
Yu-Mei Hao

A mononuclear copper(II) complex, [CuL] (1), and a phenolato-bridged trinuclear zinc(II) complex, [Zn3Cl2L2(DMF)2] (2), where L is the deprotonated form of N,N’-bis(4-bromosalicylidene)propane-1,3-diamine (H2L), have been prepared and characterized by elemental analyses, IR and UV-Vis spectroscopy, and single crystal X-ray diffraction. The Cu atom in complex 1 is in square planar coordination, while the terminal and central Zn atoms in complex 2 are in square pyramidal and octahedral coordination, respectively. The antibacterial activities of the complexes have been tested on the bacteria Staphylococcus aureus and Escherichia coli, and the yeast Candida parapsilosis.


2018 ◽  
Vol 7 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Ramesh Vinayagam ◽  
Thivaharan Varadavenkatesan ◽  
Raja Selvaraj

Abstract:An environmentally benign method to synthesize silver nanoparticles (SNPs) using the leaf extract ofBridelia retusawas developed. The UV-Vis absorption spectrum of the synthesized SNPs displayed a surface plasmon peak at 420 nm. Scanning electron microscopy (SEM) revealed the irregular shaped nanoparticles, and energy dispersive X-ray (EDX) ascertained the presence of metallic silver by showing a strong signal at 3 eV. The crystalline structure of metallic silver was confirmed by X-ray diffraction (XRD). The mean size of the SNPs was calculated as 16.21 nm. Fourier infrared (FT-IR) spectroscopic studies displayed specific bands for various functional groups and affirmed the function of reduction and stabilization of SNPs. The stability was endorsed by the zeta potential value of −18.1 mV. The results evidenced that this leaf extract-mediated synthesis method is eco-friendly, rapid, and cheap. The catalytic power of the SNPs was investigated for Rhodamine B dye degradation. The SNPs completely degraded Rhodamine B within 9 min; thus, the dye degradation process was very rapid. The pseudo-first order degradation constant was found out to be 0.1323 min−1. This paves the way for the future development of novel nano-catalysts to reduce environmental pollution.


2021 ◽  
Author(s):  
Vanaraj sekar

Abstract A simple and eco-friendly method for the green synthesis of silver nanoparticles (AgNPs) by ultrasound-assisted strategy using Barleria buxifolia leaf extract as a reducing and capping agent was established in this study. The obtained AgNPs were characterized. UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning and transmission electron microscopy (SEM and TEM), Energy Dispersive X-Ray Analyzer (EDX), X-ray diffraction, dynamic light scattering (DLS) analysis showed that the obtained AgNPs were mono dispersed spheres with uniform size of 80 nm. UV-vis spectroscopy, FTIR, and XRD analysis indicated that the surface of the obtained AgNPs was covered with organic molecules in plant extracts. The results of ABTS assays showed that high antioxidant activity was seen in the obtained AgNPs. Green synthesized AgNPs showed potent antibacterial and anti-biofilm activity against tested pathogens. Cytotoxicity assay showed that the obtained AgNPs were significantly cytotoxic to cancer cell line (MCF-7). In addition, the AgNPs synthesized in this paper can also photo catalytically degrade methylene blue dye under visible light. The potent bioactivity exhibited by the green synthesized silver nanoparticles leads towards the multiple use as antioxidant, antibacterial, anti-biofilm, cytotoxic as well as photo catalytic agent.


Author(s):  
Kashan Khan ◽  
Mohd Aamir Qureshi ◽  
Ameer Azam ◽  
Moinuddin ◽  
Javed Musarrat ◽  
...  

Aims: Globally Scientists are working to find more efficient antimicrobial drugs to treat microbial infections and kill drug-resistant bacteria. Background: Despite the availability of numerous antimicrobial drugs bacterial infections still poses a serious threat to global health. Due to a constant decline in the effectiveness of antibiotics owing to their repeated exposure as well as shortlasting antimicrobial activity, led to the demand for developing novel therapeutic agents capable of controlling microbial infections. Objective: In this study, we report antimicrobial activity of chemically synthesized silver nanoparticles (cAgNPs) augmented with ampicillin (amp) in order to increase antimicrobial response against Escherichia coli (gram –ve), Staphylococcus aureus (gram +ve) and Streptococcus mutans (gram +ve). Methods: Nanostructure, colloidal stability, morphology and size of cAgNPs before and after functionalization were explored by UV-vis spectroscopy, FT-IR, zeta potential and TEM. The formation and functionalization of cAgNPs was confirmed from UV-vis spectroscopy and FT-IR patterns. From TEM the average sizes of cAgNPs and cAgNP-amp were found to be 13 and 7.8 nm respectively, and change in colloidal stability after augmentation was confirmed from zeta potential values. The antimicrobial efficacies of cAgNP-amp and cAgNPs against E. coli S. aureus and S. mutans were studied by determining minimum inhibitory concentrations (MICs), zone of inhibition, assessment of viable and non-viable bacterial cells and quantitative assessment of biofilm. Results & Discussion: Our results revealed cAgNP-amp to be highly bactericidal compared to cAgNPs or amp alone. The nano-toxicity studies indicated cAgNP-amp to be less toxic compared to cAgNPs alone. Results: This study manifested that cAgNPs show synergistic antimicrobial effect when they get functionalized with amp suggesting their application in curing long-term bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document