Downregulation of UBE2T can enhance the radiosensitivity of osteosarcoma in vitro and in vivo

Epigenomics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1283-1305
Author(s):  
Lin Shen ◽  
Kai Zhao ◽  
Han Li ◽  
Bin Ning ◽  
Wenzhao Wang ◽  
...  

Aim: To investigate the effect of UBE2T gene on radiotherapy for osteosarcoma. Materials & methods: Gene Expression Omnibus database, RT-qPCR and immunohistochemical analysis were performed. Cell proliferation and cell cycle experiments were conducted after knockdown of UBE2T. Cell scratch, reactive oxygen species production and apoptosis experiments were conducted after the combination of radiotherapy and UBE2T silencing. Then the xenograft mode was further conducted. Results: UBE2T was highly expressed in human osteosarcoma. Suppression of UBE2T inhibited osteosarcoma cell proliferation and induced cell cycle arrest at the G2/M phase. Downregulation of UBE2T combined with radiation can substantially inhibit clonal formation and migration, and promote apoptosis of osteosarcoma cells in vitro and in vivo. Conclusion: UBE2T downregulation can enhance the radiosensitivity of osteosarcoma in vitro and in vivo.

Author(s):  
Jiewei Lin ◽  
Shuyu Zhai ◽  
Siyi Zou ◽  
Zhiwei Xu ◽  
Jun Zhang ◽  
...  

Abstract Background FLVCR1-AS1 is a key regulator of cancer progression. However, the biological functions and underlying molecular mechanisms of pancreatic cancer (PC) remain unknown. Methods FLVCR1-AS1 expression levels in 77 PC tissues and matched non-tumor tissues were analyzed by qRT-PCR. Moreover, the role of FLVCR1-AS1 in PC cell proliferation, cell cycle, and migration was verified via functional in vitro and in vivo experiments. Further, the potential competitive endogenous RNA (ceRNA) network between FLVCR1-AS1 and KLF10, as well as FLVCR1-AS1 transcription levels, were investigated. Results FLVCR1-AS1 expression was low in both PC tissues and PC cell lines, and FLVCR1-AS1 downregulation was associated with a worse prognosis in patients with PC. Functional experiments demonstrated that FLVCR1-AS1 overexpression significantly suppressed PC cell proliferation, cell cycle, and migration both in vitro and in vivo. Mechanistic investigations revealed that FLVCR1-AS1 acts as a ceRNA to sequester miR-513c-5p or miR-514b-5p from the sponging KLF10 mRNA, thereby relieving their suppressive effects on KLF10 expression. Additionally, FLVCR1-AS1 was shown to be a direct transcriptional target of KLF10. Conclusions Our research suggests that FLVCR1-AS1 plays a tumor-suppressive role in PC by inhibiting proliferation, cell cycle, and migration through a positive feedback loop with KLF10, thereby providing a novel therapeutic strategy for PC treatment.


2020 ◽  
Author(s):  
Xiaohui Pan ◽  
Jingxue Tan ◽  
Rui Du ◽  
Yuqing Jiang ◽  
Yiping Weng ◽  
...  

Abstract Background Osteosarcoma (OS) which occurs mainly in the young people is a common malignant bone tumor. Apoptosis is a form of programmed and controlled cell death and promoting apoptosis of OS cells is an important treatment for OS. However, the pathways of controlling apoptosis in OS remain unclear. Immature colon carcinoma transcript-1 (ICT1) which is previously named DS-1 belongs to a family of four putative mitochondrial translation release factors. It controls the termination stage of translation. Methods In this study, the function of ICT1 was elucidated by a series of in vivo and in vitro assays. The potential downstream targets of ICT1 in the OS was identified by qRT-PCR and western blotting, while immunohistochemical analysis and rescue experiment were performed to confirm this result. Results ICT1 was upregulated in OS, and higher expression of ICT1 was associated with worse overall survival rate. Functional studies suggested that knockdown of ICT1 could inhibit OS cell proliferation in vitro or in vivo. In addition, suppression of ICT1 could promote apoptosis of OS cells. Furthermore, we demonstrated that BCL-2, apoptotic related-genes, is a potential target of ICT1 and BCL-2 overexpression partly reversed the inhibitory effects of ICT1 knockdown on the pro-tumorigenic properties of OS cells in vitro. Conclusion The ICT1 protein was overexpressed in the OS and has identified a novel mechanism by which ICT1 inhibits osteosarcoma cell proliferation by regulating cell apoptosis through targeting BCL-2.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Shutao Pan ◽  
Ming Shen ◽  
Min Zhou ◽  
Xiuhui Shi ◽  
Ruizhi He ◽  
...  

AbstractDysfunction in long noncoding RNAs (lncRNAs) is reported to participate in the initiation and progression of human cancer; however, the biological functions and molecular mechanisms through which lncRNAs affect pancreatic cancer (PC) are largely unknown. Here, we report a novel lncRNA, LINC01111, that is clearly downregulated in PC tissues and plasma of PC patients and acts as a tumor suppressor. We found that the LINC01111 level was negatively correlated with the TNM stage but positively correlated with the survival of PC patients. The overexpression of LINC01111 significantly inhibited cell proliferation, the cell cycle, and cell invasion and migration in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, the knockdown of LINC01111 enhanced cell proliferation, the cell cycle, and cell invasion and migration in vitro, as well as tumorigenesis and metastasis in vivo. Furthermore, we found that high expression levels of LINC01111 upregulated DUSP1 levels by sequestering miR-3924, resulting in the blockage of SAPK phosphorylation and the inactivation of the SAPK/JNK signaling pathway in PC cells and thus inhibiting PC aggressiveness. Overall, these data reveal that LINC01111 is a potential diagnostic biomarker for PC patients, and the newly identified LINC01111/miR-3924/DUSP1 axis can modulate PC initiation and development.


Development ◽  
1997 ◽  
Vol 124 (11) ◽  
pp. 2167-2177 ◽  
Author(s):  
K. Rhee ◽  
D.J. Wolgemuth

The Aspergillus nimA gene encodes a Ser/Thr protein kinase which is required for mitosis, in addition to Cdc2, and which has been suggested to have a role in chromosomal condensation. In this study, we isolated a potential murine homologue of nimA, Nek2, which was shown to be expressed most abundantly in the testis of the adult tissues examined. Its expression in the testis was restricted to the germ cells, with highest levels detected in spermatocytes at pachytene and diplotene stages. Immunohistochemical analysis revealed that Nek2 localized to nuclei, exhibiting a non-uniform distribution within the nucleus. Nek2 appeared to be associated with meiotic chromosomes, an association that was better defined by immunolocalization to hypotonically dispersed meiotic chromosomes. This localization was more apparent in regions of dense chromatin, including the sex vesicle, and was also obvious at some of the chromosome ends. The presence of Nek2 protein was not unique to male germ cells, as it was found in meiotic pachytene stage oocytes as well. Furthermore, in an in vitro experimental setting in which meiotic chromosome condensation was induced with okadaic acid, a concomitant induction of Nek2 kinase activity was observed. The expression of Nek2 in meiotic prophase is consistent with the hypothesis that in vivo, Nek2 is involved in the G2/M phase transition of the cell cycle. Our results further provide evidence that in vivo, mouse Nek2 is involved in events of meiosis, including but not limited to chromosomal condensation.


2021 ◽  
Author(s):  
Guangtao Han ◽  
Ting Liu

Abstract BackgroundOsteosarcoma is the most common primary bone malignancy. Chemotherapy for osteosarcoma often induces severe complications to the patients. Thus, the identification of new effective antineoplastic agents with fewer side effects remain a necessity. Panax notoginseng saponins (PNS) were therapeutic active components of panax notoginseng and were reported taking the capability to inhibit the growth of several tumors in vitro and in vivo. However, its effect on osteosarcoma has not been studied. This study first investigated the effect of PNS on osteosarcoma cells.MethodsCCK-8 essay used to determine the appropriate working concentration of PNS on osteosarcoma,annixV-FITC/PI experiment used to measure the apoptosis of PNS on osteosarcoma, wound healing assay was used to detect the migration of PNS on osteosarcoma, cell invasiveness was measured by transwell essay,cell cycle was measured by PI,the expression of relative protein was shown by western blot.ResultsOur result indicated that PNS inhibited osteosarcoma cells’ proliferation, invasion and migration, promoted their apoptosis. Besides, PNS also increased mitochondrial membrane potential and the level of reactive oxygen species. Cell cycle of osteosarcoma was arrested in G0 / G1 phase after treatment with PNS. The expression of p53, and mitochondrial related apoptosis proteins were promoted; however, decreased autophagy in osteosarcoma cells with PNS treatment were observed.ConclusionTaking the above effect of PNS on osteosarcoma, PNS were of the potential therapeutic value for treatment of osteosarcoma.


2020 ◽  
Author(s):  
Xiaohui Pan ◽  
Jingxue Tan ◽  
Rui Du ◽  
Yuqing Jiang ◽  
Yiping Weng ◽  
...  

Abstract Background:Osteosarcoma (OS) which occurs mainly in the young people is a familiar malignant bone tumor. Apoptosis is a kind of programmed and managed cell death and promoting apoptosis of OS cells is an important treatment for OS. However, the pathways of controlling apoptosis in OS remain unclear. Immature colon carcinoma transcript-1 (ICT1) belongs to a family of four putative mitochondrial translation release factors. It controls the termination stage of translation. Methods:In this study, the function of ICT1 was elucidated by a series of in vivo and in vitro assays. The potential downstream targets of ICT1 in the OS was confirmed by Quantitative real‑time polymerase chain reaction (qRT-PCR) and western blotting, while immunohistochemical analysis and rescue experiment were performed to confirm this result. Results: ICT1 was significantly upregulated in osteosarcoma, and higher expression of ICT1 led to the worse survival rate. Furthermore, knockdown of ICT1 could inhibit the cell proliferation, but improved the apoptosis of cells in vitro and in vivo. In addition, our data demonstrated that BCL-2, apoptotic related-genes, is a potential target of ICT1 and the overexpression of BCL-2 partly reduced the negative influence of ICT1 knockdown on the pro-tumorigenic capabilities of OS cells in vitro. Conclusion: The ICT1 protein was overexpressed in the OS and has identified a novel mechanism by which ICT1 inhibits osteosarcoma cell proliferation by regulating cell apoptosis through targeting BCL-2.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12072
Author(s):  
Yufan Zhu ◽  
Zhiqiang Yang ◽  
Yuanlong Xie ◽  
Min Yang ◽  
Yufeng Zhang ◽  
...  

Objective This study aims to explore the effect of daidzein, which is a natural isoflavone compound mainly extracted from soybeans, on osteosarcoma and the potential molecular mechanism. Material and Methods 143B and U2OS osteosarcoma cells were treated with gradient concentrations of daidzein, and MTT assay was used to determine the cell proliferation capacity and IC50. Hoechst 33342 staining and Annexin V-FITC/PI detection were used to determine apoptosis. Cell cycle was analyzed by flow cytometry, and migration ability were detected by transwell assays and scratch wound assay. An osteosarcoma xenograft mice model was applied to investigate the effect of daidzein on osteosarcoma in vivo. Systematic pharmacology and molecular modeling analysis were applied to predict the target of daidzein to osteosarcoma, and the target Src was verified by western blotting. We also observed the effect of daidzein on cell proliferation and apoptosis of Src-overexpressing osteosarcoma cells. Results In vitro, daidzein significantly inhibited 143B and U2OS osteosarcoma cell proliferation and migration, and induced cell cycle arrest. In vivo, daidzein exerts antitumor effects in osteosarcoma xenograft mice. After systematic screening and analysis, Src-MAPK signaling pathway was predicted as the highest-ranked pathway. Western blot demonstrated that daidzein inhibited phosphorylation of the Src-ERK pathway in osteosarcoma cells. Also, overexpression of Src could partially reverse the inhibitory effects of daidzein on osteosarcoma cell proliferation. Conclusion Daidzein exerts an antitumor effect on osteosarcoma, and the mechanism may be through the Src-ERK pathway.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yubao Gong ◽  
Chen Yang ◽  
Zhengren Wei ◽  
Jianguo Liu

Abstract To explore the expression and the functions of SRPK1 in osteosarcoma, we retrieved transcription profiling dataset by array of human bone specimens from patients with osteosarcoma from ArrayExpress (accession E-MEXP-3628) and from Gene Expression Omnibus (accession GSE16102) and analyzed expression level of SRPK1 and prognostic value in human osteosarcoma. Then we examined the effect of differential SRPK1 expression levels on the progression of osteosarcoma, including cell proliferation, cell cycle, apoptosis, and investigated its underlying molecular mechanism using in vitro osteosarcoma cell lines and in vivo nude mouse xenograft models. High expression level of SRPK1 was found in human osteosarcoma tissues and cell lines as compared to the normal bone tissues and osteoblast cells, and predicted poor prognosis of human osteosarcoma. Overexpression of SRPK1 in osteosarcoma U2OS cells led to cell proliferation but inhibition of apoptosis. In contrast, knockdown of SRPK1 in HOS cells impeded cell viability and induction of apoptosis. Moreover, silencing SRPK1 inhibited osteosarcoma tumor growth in nude mice. Mechanistic studies revealed that SRPK1 promoted cell cycle transition in osteosarcoma cells and activation of NF-κB is required for SRPK1 expression and its pro-survival signaling. SRPK1 promoted human osteosarcoma cell proliferation and tumor growth by regulating NF-κB signaling pathway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zehua Zhang ◽  
Fei Dai ◽  
Fei Luo ◽  
Wenjie Wu ◽  
Shuai Zhang ◽  
...  

AbstractOsteosarcoma is a malignant osteoblastic tumor that can gravely endanger the lives and health of children and adolescents. Therefore, there is an urgent need to explore new biomarkers for osteosarcoma and determine new targeted therapies to improve the efficacy of osteosarcoma treatment. Diaphanous related formin 3 (DIAPH3) promotes tumorigenesis in hepatocellular carcinoma and lung adenocarcinoma, suggesting that DIAPH3 may be a target for tumor therapy. To date, there have been no reports on the function of DIAPH3 in osteosarcoma. DIAPH3 protein expression in osteosarcoma tissues and healthy bone tissues adjacent to cancer cells was examined by immunohistochemical staining. DIAPH3 mRNA expression correlates with overall survival and reduced disease-free survival. DIAPH3 protein is upregulated in osteosarcoma tissues, and its expression is significantly associated with tumor size, tumor stage, node metastasis, and distant metastasis. Functional in vitro experiments revealed that DIAPH3 knockdown suppressed cell proliferation and suppressed cell migration and invasion of osteosarcoma cell lines MG-63 and HOS. Functional experiments demonstrated that DIAPH3 knockdown inhibited subcutaneous tumor growth and lung metastasis in vivo. In conclusion, DIAPH3 expression can predict the clinical outcome of osteosarcoma. In addition, DIAPH3 is involved in the proliferation and metastasis of osteosarcoma, and as such, DIAPH3 may be a potential therapeutic target for osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document