DNA methylation events in transcription factors and gene expression changes in colon cancer

Epigenomics ◽  
2020 ◽  
Vol 12 (18) ◽  
pp. 1593-1610
Author(s):  
Anna Díez-Villanueva ◽  
Rebeca Sanz-Pamplona ◽  
Robert Carreras-Torres ◽  
Ferran Moratalla-Navarro ◽  
M Henar Alonso ◽  
...  

Aim: Gain insight about the role of DNA methylation in the malignant growth of colon cancer. Patients & methods: Methylation and gene expression from 90 adjacent-tumor paired tissues and 48 healthy tissues were analyzed. Tumor genes whose change in expression was explained by changes in methylation were identified using linear models adjusted for tumor stromal content. Results: No differences in methylation were found between adjacent and healthy tissues, but clear differences were found between adjacent and tumor samples. We identified hypermethylated CpG islands located in promoter regions that drive differential gene expression of transcription factors and their target genes. Conclusion: Changes in methylation of a few genes provoke important changes in gene expression, by expanding the signal through transcription activation/repression.

2021 ◽  
Vol 12 ◽  
Author(s):  
Esther K. Elliott ◽  
Lloyd N. Hopkins ◽  
Robert Hensen ◽  
Heidi G. Sutherland ◽  
Larisa M. Haupt ◽  
...  

MicroRNAs (miRNAs) are well known for their ability to regulate the expression of specific target genes through degradation or inhibition of translation of the target mRNA. In various cancers, miRNAs regulate gene expression by altering the epigenetic status of candidate genes that are implicated in various difficult to treat haematological malignancies such as non-Hodgkin lymphoma by acting as either oncogenes or tumour suppressor genes. Cellular and circulating miRNA biomarkers could also be directly utilised as disease markers for diagnosis and monitoring of non-Hodgkin lymphoma (NHL); however, the role of DNA methylation in miRNA expression regulation in NHL requires further scientific inquiry. In this study, we investigated the methylation levels of CpGs in CpG islands spanning the promoter regions of the miR-17–92 cluster host gene and the TET2 gene and correlated them with the expression levels of TET2 mRNA and miR-92a-3p and miR-92a-5p mature miRNAs in NHL cell lines, tumour samples, and the whole blood gDNA of an NHL case control cohort. Increased expression of both miR-92a-3p and miR-92a-5p and aberrant expression of TET2 was observed in NHL cell lines and tumour tissues, as well as disparate levels of dysfunctional promoter CGI methylation. Both miR-92a and TET2 may play a concerted role in NHL malignancy and disease pathogenesis.


Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 137 ◽  
Author(s):  
Shenglin Liu ◽  
Anne Aagaard ◽  
Jesper Bechsgaard ◽  
Trine Bilde

Variation in DNA methylation patterns among genes, individuals, and populations appears to be highly variable among taxa, but our understanding of the functional significance of this variation is still incomplete. We here present the first whole genome bisulfite sequencing of a chelicerate species, the social spider Stegodyphus dumicola. We show that DNA methylation occurs mainly in CpG context and is concentrated in genes. This is a pattern also documented in other invertebrates. We present RNA sequence data to investigate the role of DNA methylation in gene regulation and show that, within individuals, methylated genes are more expressed than genes that are not methylated and that methylated genes are more stably expressed across individuals than unmethylated genes. Although no causal association is shown, this lends support for the implication of DNA CpG methylation in regulating gene expression in invertebrates. Differential DNA methylation between populations showed a small but significant correlation with differential gene expression. This is consistent with a possible role of DNA methylation in local adaptation. Based on indirect inference of the presence and pattern of DNA methylation in chelicerate species whose genomes have been sequenced, we performed a comparative phylogenetic analysis. We found strong evidence for exon DNA methylation in the horseshoe crab Limulus polyphemus and in all spider and scorpion species, while most Parasitiformes and Acariformes species seem to have lost DNA methylation.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2385-2385
Author(s):  
Ananya Sengupta ◽  
Ghanshyam Upadhyay ◽  
Sayani Sen ◽  
Shireen Saleque

Abstract Introduction: Appropriate diversification of hematopoietic lineages from multi-potent progenitors is essential for normal development and health. The molecular programs that govern the divergence of erythroid and megakaryocytic lineages remain incompletely defined. Gene targeting experiments have shown the transcriptional repressor Gfi1b (Growth factor independence 1b) to be essential for erythro-megakaryocyte lineage development. Transcriptional repression of Gfi1b target genes is mediated by the cofactors LSD (lysine demethylase) 1 and Rcor (CoREST) 1. To understand the mechanism of Gfi1b action, its target genes were identified by chromatin immunoprecipitation (ChIP on Chip) screens. Three members of the Rgs (Regulator of G protein signaling) family were prominently represented in this target gene pool. In this study we present the role of Rgs18, a GTPase activating protein (GAP), in modulating erythro-megakaryocytic lineage divergence in hematopoietic progenitors. The results presented below demonstrate Rgs18 as a key arbitrator of this process in murine and human contexts. Approach: Following identification of Rgs18 as a potential Gfi1b and LSD1 target, its regulation by these factors was ascertained in erythro-megakaryocytic cells. Subsequently, to interrogate the role of Rgs18 in erythro-megakaryocyte differentiation, cDNA and shRNA mediated manipulations were performed in primary hematopoietic progenitors and cell lines, and the resulting phenotypes were analyzed. Finally, to trace the underlying mechanistic alterations responsible for these phenotypes the status of two branches of the MAPK (mitogen activated protein kinase) pathway and gene expression patterns of the mutually antagonistic transcription factors Fli1 (Friend leukemia integration [site] 1/Klf1 (Krupple like factor 1) were determined in Rgs18 manipulated cells. Result: Rgs18 expression was found to be low in immature megakaryoblasts in keeping with strong Gfi1b and LSD1 expression, but was reciprocally upregulated in mature megakaryocytes following declining Gfi1b and LSD1 levels in cells and on the rgs18 promoter. In contrast, expression of Gfi1b was strong in immature erythroid cells and increased further in mature cells, while Rgs18 expression which was modest in immature erythroid cells exhibited a reciprocal decline during maturation. Manipulation of Rgs18 expression in murine hematopoietic progenitors and a bipotential human cell line produced divergent outcomes, with expression augmenting megakaryocytic, and potently suppressing erythroid differentiation and vice versa. These phenotypes resulted from differential impact of Rgs18 expression on the P38 and ERK branches of MAPK signaling in the erythroid and megakaryocytic lineages. Repercussions of these signaling changes impacted relative expression of the mutually antagonistic transcription factors Fli1 and Klf1 and were compensated by ectopic Fli1 expression demonstrating activity of this transcription factor downstream of Rgs18. Conclusion: These results identify Rgs18 as a critical downstream effector of Gfi1b and an upstream regulator of MAPK signaling and Klf1/Fli1 gene expression. Sustained Gfi1b expression during erythroid differentiation represses Rgs18 and limits megakaryocytic gene expression. However during progression of megakaryocytic differentiation, declining Gfi1b levels results in robust expression of Rgs18 and lineage progression. Overall, this study provides new perspectives on lineage determination by highlighting multi-tier interactions between transcriptional and signaling networks in orchestrating hematopoietic lineage divergence. These insights could exemplify generic mechanisms exhibited by this large family of signal modulators in mediating lineage diversification in various contexts. Disclosures No relevant conflicts of interest to declare.


Medicine ◽  
2017 ◽  
Vol 96 (47) ◽  
pp. e8487 ◽  
Author(s):  
Yong Yang ◽  
Fu-Hao Chu ◽  
Wei-Ru Xu ◽  
Jia-Qi Sun ◽  
Xu Sun ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-36
Author(s):  
Jessica M Salmon ◽  
Casie Leigh Reed ◽  
Maddyson Bender ◽  
Helen Lorraine Mitchell ◽  
Vanessa Fox ◽  
...  

Krüppel-like factors (KLFs) are a family of transcription factors that play essential roles in the development and differentiation of the hematopoietic system. These transcription factors possess highly conserved C-terminal zinc-finger motifs, which enable their binding to GC-rich, or CACC-box, motifs in promoter and enhancer regions of target genes. The N-terminal domains of these proteins are more varied and mediate the recruitment of various co-factors, which can form a complex with either activator or repressor function. Acting primarily as a gene repressor through its recruitment of CtBPs and histone deacetylases (HDACs) [1], we have recently shown that KLF3 competes with KLF1 bound sites in the genome to repress gene expression during erythropoiesis [2]. However, the function of Klf3 in other lineages has been less well studied. This widely expressed transcription factor has reported roles in the differentiation of marginal zone B cells, eosinophil function and inflammation [3]. We utilised the Klf3-null mouse model [4] to more closely examine the role of Klf3 in innate inflammatory cells. These mice exhibit elevated white cell counts, including monocytes (Figure 1A), and inflammation of the skin. Conditional knockout of Klf4 in myeloid cells leads to a deficiency of inflammatory macrophages [5]. To test our hypothesis KLF3 normally represses inflammation, perhaps by antagonising the action of KLF4, bone-marrow derived macrophages (BMDM) were generated from wild-type or Klf3-null mice and stimulated with the bacterial toxin lipopolysaccharide (LPS). In wild type BMDM, LPS induces Klf3 gene expression and activation then delayed repression of target genes such as Lgals3 (galectin-3) over a 21 hour time course (Figure 1B). Quantitative real-time PCR and mRNA-seq of WT v Klf3-null macrophages identified ~100 differentially expressed genes involved in proliferation, macrophage activation and inflammation. We transduced the monocyte cell line, RAW264.7 (that expresses Klf4, Klf3 and Klf2), with a retroviral vector expressing a tamoxifen-inducible KLF3-ER fusion construct. KLF3 induced cell cycle arrest and macrophage differentiation. We will report on KLF3-induced gene expression changes (repression and activation), and ChIP-seq for KLF3, in RAW cells. The results shed light on the mechanism by which KLF3 normally represses monocyte/macrophage responses to infection. This study highlights the importance of key transcriptional regulators that tightly control gene expression during inflammation. Loss of Klf3 leads to alterations in this process, resulting in hyper-activation of inflammatory macrophages, increased white cell counts and inflammation of the skin. A greater knowledge of the inflammatory process and how it is regulated is important for our understanding of acute infection and inflammatory disease. Further studies are planned to investigate the role of the KLF3 transcription factor in response to inflammation in vivo. References: 1. Pearson, R., et al., Kruppel-like transcription factors: A functional family. Int J Biochem Cell Biol, 2007. W2. Ilsley, M.D., et al., Kruppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Res, 2017. 45(11): p. 6572-6588. W3. Knights, A.J., et al., Kruppel-like factor 3 (KLF3) suppresses NF-kappaB-driven inflammation in mice. J Biol Chem, 2020. 295(18): p. 6080-6091. W4. Sue, N., et al., Targeted disruption of the basic Kruppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol, 2008. 28(12): p. 3967-78. W5. Alder, J.K., et al., Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol, 2008. 180(8): p. 5645-52. Figure 1: Elevated WCC (A) and inflammatory markers (B) in BMDM after LPS stimulation. 1. Total WCC in adult mice (3-6 months old) of the indicated genotypes. There is a statistically significant increase in the WCC in Klf3-/- v wild type mice (P<0.001 by student's t test). B. Time course (hours) after LPS stimulation of confluent BMDM. Klf3 is induced 3-fold by LPS and KLF3-target genes such as Lgals3 are not fully repressed by 21 hours in knockout mice. Figure 1 Disclosures Perkins: Novartis Oncology: Honoraria, Membership on an entity's Board of Directors or advisory committees.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fernanda Ferreira Salgado ◽  
Letícia Rios Vieira ◽  
Vivianny Nayse Belo Silva ◽  
André Pereira Leão ◽  
Priscila Grynberg ◽  
...  

Abstract Background Several mechanisms regulating gene expression contribute to restore and reestablish cellular homeostasis so that plants can adapt and survive in adverse situations. MicroRNAs (miRNAs) play roles important in the transcriptional and post-transcriptional regulation of gene expression, emerging as a regulatory molecule key in the responses to plant stress, such as cold, heat, drought, and salt. This work is a comprehensive and large-scale miRNA analysis performed to characterize the miRNA population present in oil palm (Elaeis guineensis Jacq.) exposed to a high level of salt stress, to identify miRNA-putative target genes in the oil palm genome, and to perform an in silico comparison of the expression profile of the miRNAs and their putative target genes. Results A group of 79 miRNAs was found in oil palm, been 52 known miRNAs and 27 new ones. The known miRNAs found belonged to 28 families. Those miRNAs led to 229 distinct miRNA-putative target genes identified in the genome of oil palm. miRNAs and putative target genes differentially expressed under salinity stress were then selected for functional annotation analysis. The regulation of transcription, DNA-templated, and the oxidation-reduction process were the biological processes with the highest number of hits to the putative target genes, while protein binding and DNA binding were the molecular functions with the highest number of hits. Finally, the nucleus was the cellular component with the highest number of hits. The functional annotation of the putative target genes differentially expressed under salinity stress showed several ones coding for transcription factors which have already proven able to result in tolerance to salinity stress by overexpression or knockout in other plant species. Conclusions Our findings provide new insights into the early response of young oil palm plants to salinity stress and confirm an expected preponderant role of transcription factors - such as NF-YA3, HOX32, and GRF1 - in this response. Besides, it points out potential salt-responsive miRNAs and miRNA-putative target genes that one can utilize to develop oil palm plants tolerant to salinity stress.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3618-3618
Author(s):  
Marwa Saied ◽  
Sabah Khaled ◽  
Thomas Down ◽  
Jacek Marzec ◽  
Paul Smith ◽  
...  

Abstract Abstract 3618 DNA methylation is the most stable epigenetic modification and has a major role in cancer initiation and progression. The two main aims for this research were, firstly, to use the genome wide analysis of DNA methylation to better understand the development of acute myeloid leukemia (AML). The second aim was to detect differentially methylated genes/regions between certain subtypes of AML and normal bone marrow (NBM). We used the methylated DNA immunoprecipitation technique followed by high-throughput sequencing by Illumina Genome Analyser II (MeDIP -seq) for 9 AML samples for which ethical approval has been obtained. The selected leukemias included three with the t(8; 21), three with the t(15; 17) translocations and three with normal karyotypes (NK). The control samples were 3 normal bone marrows (NBMs) from healthy donors. The number of reads generated from Illumina ranged between 18– 20 million paired-end reads/lane with a good base quality from both ends (base quality > 30 represented 75%-85% of reads). The reads were aligned using 2 algorithms (Maq and Bowtie) and the methylation analysis was performed by Batman software (Bayesian Tool for Methylation Analysis). The creation of this genome-wide methylation map for AML permits the examination of the patterns for key genetic elements. Investigation of the 35,072 promoter regions identified 80 genes, which showed a significant differential methylation levels in leukemic cases in comparison to NBM; consistently high methylation levels in leukaemia were detected in the promoters of 70 genes e.g. DPP6, ID4, DCC, whereas high methylation levels in NBM, lost in leukaemia was observed in 10 genes e.g. ATF4. For each AML subtype, we also identified significant differentially methylated promoter regions e.g. PAX1 for t(8; 21), GRM7 for t(15; 17), NPM2 for NK. An analysis of gene body methylation identified 49 genes with significantly higher methylation in AML in comparison to NBM e.g. MYOD1 and 31 genes with a higher methylation in NBMs than AML e.g. GNG8. A similar analysis of 23,600 CpG islands identified 400 CpG islands with significant differential methylation levels between leukaemia and NBMs (212 CpG islands were found to have significantly increased methylation in leukaemia and 188 CpG islands had significantly higher methylation in NBMs). The pattern of methylation in CpG island “shores” (2 KB from either side of each CpG island) has been investigated and 312 CpG island shores showed a higher methylation in leukaemia and 88 CpG shores had a significant increase methylation levels in NBMs. This genome wide methylation map has been validated by using direct bisulfite sequencing of the regions identified above (Spearman r= 0.8, P <0.0001) and also by using Illumina Infinium assay (Spearman r= 0.7 P <0.0001) which interrogates regions at single representative CpGs. Comparison of previous array based gene expression data with this methylation map revealed a significant negative correlation between promoter methylation and gene expression (Pearson r= -0.9, P< 0.0001) while, gene body methylation showed a small negative correlation with gene expression, that was found in genes of CpG density >3% (Pearson r= -0.3, P< 0.0001). Conclusion: we have established a high-resolution (100bp) map of DNA methylation in AML and thus identified a novel list of genes, which have significantly differential methylation levels in AML. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 11 ◽  
pp. 251686571881111 ◽  
Author(s):  
Maud de Dieuleveult ◽  
Benoit Miotto

DNA methylation plays an essential role in the control of gene expression during early stages of development as well as in disease. Although many transcription factors are sensitive to this modification of the DNA, we still do not clearly understand how it contributes to the establishment of proper gene expression patterns. We discuss here the recent findings regarding the biological and molecular function(s) of the transcription factor ZBTB38 that binds methylated DNA sequences in vitro and in cells. We speculate how these findings may help understand the role of DNA methylation and DNA methylation–sensitive transcription factors in mammalian cells.


2018 ◽  
Vol 4 (2) ◽  
pp. 100040 ◽  
Author(s):  
Anna Wierczeiko ◽  
David Fournier ◽  
Hristo Todorov ◽  
Susanne Klingenberg ◽  
Kristina Endres ◽  
...  

Aging is a multi-factorial process, where epigenetic factors play one of the major roles in declines of gene expression and organic function. DNA methylation at CpG islands of promoters can directly change the expression of the neighbouring gene mostly through inhibition. Furthermore, it is known that DNA methylation patterns change during aging In our study, we investigated gene regulation through DNA methylation of genes up- and downregulated in long-lived people compared to a younger cohort. Our data revealed that comparatively highly methylated genes were associated with high expression in long-lived people (e.g. over 85). Genes with lower levels of methylation were associated with low expression. These findings might contradict the general model used to associate methylation status with expression. Indeed, we found that methylation in the promoter regions of all investigated genes is rather constant across different age groups, meaning that the disparity between methylation and expression only happens in older people. A potential explanation could be the impact of other epigenetic mechanisms, possibly related to stress.


BioMedicine ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 22 ◽  
Author(s):  
Kosar Babaei ◽  
Roya Khaksar ◽  
Tahereh Zeinali ◽  
Hossein Hemmati ◽  
Ahmadreza Bandegi ◽  
...  

Colorectal cancer (CRC) is distinguished by epigenetic elements like DNA methylation, histone modification, histone acetylation and RNA remodeling which is related with genomic instability and tumor initiation. Correspondingly, as a main epigenetic regulation, DNA methylation has an impressive ability in order to be used in CRC targeted therapy. Meaningly, DNA methylation is identified as one of most important epigenetic regulators in gene expression and is considered as a notable potential driver in tumorigenesis and carcinogenesis through gene-silencing of tumor suppressors genes. Abnormal methylation situation, even in the level of promoter regions, does not essentially change the gene expression levels, particularly if the gene was become silenced, leaving the mechanisms of methylation without any response. According to the methylation situation which has a strong eagerness to be highly altered on CpG islands in carcinogenesis and tumorigenesis, considering its epigenetic fluctuations in finding new biomarkers is of great importance. Modifications in DNA methylation pattern and also enrichment of methylated histone signs in the promoter regions of some certain genes like MUTYH, KLF4/6 and WNT1 in different signaling pathways could be a notable key contributors to the upregulation of tumor initiation in CRC. These epigenetic alterations could be employed as a practical diagnostic biomarkers for colorectal cancer. In this review, we will be discuss these fluctuations of MUTYH, KLF4/6 and WNT1 genes in CRC.


Sign in / Sign up

Export Citation Format

Share Document