Targeted siRNA nanotherapeutics against breast and ovarian metastatic cancer: a comprehensive review of the literature

Nanomedicine ◽  
2021 ◽  
Author(s):  
Abdus Subhan ◽  
Sara Aly Attia ◽  
Vladimir P Torchilin

Metastasis is considered the major cause of unsuccessful cancer therapy. The metastatic development requires tumor cells to leave their initial site, circulate in the blood stream, acclimate to new cellular environments at a remote secondary site and endure there. There are several steps in metastasis, including invasion, intravasation, circulation, extravasation, premetastatic niche formation, micrometastasis and metastatic colonization. siRNA therapeutics are appreciated for their usefulness in treatment of cancer metastasis. However, siRNA therapy as a single therapy may not be a sufficient option for control of metastasis. By combining siRNA with targeting, functional agents or small molecule drugs have shown potential effects that enhance therapeutic effectiveness. This review addresses multidrug resistance and metastasis in breast and ovarian cancers and highlights drug delivery strategies using siRNA therapeutics.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Zahraa I. Khamis ◽  
Ziad J. Sahab ◽  
Qing-Xiang Amy Sang

Metastasis is the major cause of death for breast cancer patients. Tumors are heterogenous cellular entities composed of cancer cells and cells of the microenvironment in which they reside. A reciprocal dynamic interaction occurs between the tumor cells and their surrounding stroma under physiological and pathological conditions. This tumor-host communication interface mediates the escape of tumor cells at the primary site, survival of circulating cancer cells in the vasculature, and growth of metastatic cancer at secondary site. Each step of the metastatic process is accompanied by recruitment of stromal cells from the microenvironment and production of unique array of growth factors and chemokines. Stromal microenvironment may play active roles in breast cancer metastasis. Elucidating the types of cells recruited and signal pathways involved in the crosstalk between tumor cells and stromal cells will help identify novel strategies for cotargeting cancer cells and tumor stromal cells to suppress metastasis and improve patient outcome.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Zhedong Zhang ◽  
Jiao Qiao ◽  
Dafang Zhang ◽  
Weihua Zhu ◽  
Jiye Zhu ◽  
...  

Cancer metastasis has been demonstrated as it is the culmination of a cascade of priming steps. Increasing evidence has shown that tumor-derived molecular components (TDMCs) are known as extra cellular vesicle and nonvesicle factors and serve as versatile intercellular communication vehicles which can mediate signaling in the tumor microenvironment while creating the premetastatic niche. Noncoding RNAs (ncRNAs) as one of the TDMCs have been proved in participating in the formation of the premetastatic niche. Understanding the premetastatic niche formation mechanisms through TDMCs, especially ncRNAs may open a new avenue for cancer metastasis therapeutic strategies. In this review, recent findings regarding ncRNAs function were summarized, and then the interaction with the premetastatic niche formation was studied, which highlight the potential of using ncRNAs for cancer diagnosis and therapeutic effect.


2021 ◽  
Vol 9 (10) ◽  
pp. e002875
Author(s):  
Chenghui Yang ◽  
Zhen Wang ◽  
Lili Li ◽  
Zhigang Zhang ◽  
Xiaoyan Jin ◽  
...  

BackgroundNeutrophils-linked premetastatic niche plays a key role in tumor metastasis, but not much is known about the heterogeneity and diverse role of neutrophils in niche formation. Our study focuses on the existence and biological function of a rarely delved subset of neutrophils, named as tumor-associated aged neutrophils (Naged, CXCR4+CD62Llow), involved in premetastatic niche formation during breast cancer metastasis.MethodsWe explored the distributions of Naged in 206 patients and mice models (4T1 and MMTV-PyMT) by flow cytometry. The ability of Naged to form neutrophil extracellular traps (NETs) and promote tumor metastasis in patients and mice was determined by polychromatic immunohistochemistry, scanning electron microscopy and real-time video detection. Furthermore, the differences among tumor-associated Naged, Non-Naged and inflammation-associated aged neutrophils were compared by transcriptome, the biological characteristics of Naged were comprehensively analyzed from the perspectives of morphology, the metabolic capacity and mitochondrial function were investigated by Seahorse, co-immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP) and transmission electron microscopy (TEM). Finally, 120 patients’ sample were applied to confirm the acceleration of Naged formation through secreted NAMPT, and the importance of blocking this pathway in mice was evaluated.ResultsWe find that Naged accumulate in the lung premetastatic niche at early stage of breast tumorigenesis in multiple mice models and also exist in peripheral blood and metastatic lung of patients with breast cancer. Naged exhibit distinct cell marker and morphological feature of oversegmented nuclei. Further transcriptome reveals that Naged are completely different from those of Non-Aged or inflammation-associated aged neutrophils and illustrates that the key transcription factor SIRT1 in Naged is the core to maintain their lifespan via mitophagy for their function. The responsible mechanism is that SIRT1 can induce the opening of mitochondrial permeability transition pore channels to release mitochondrial DNA and lead to the mitochondria-dependent vital NETs formation, rather than traditional Cit-Histone H3 dependent fatal-NETs. Further mechanically investigation found tumor derived NAMPT could induce Naged formation. Additionally, therapeutic interventions of Naged and its formation-linked pathways could effectively decrease breast cancer lung metastasis.ConclusionsNaged exerts a vital role in breast cancer lung metastasis, and strategies targeting SIRT1-Naged-NETs axis show promise for translational application.


Author(s):  
Laura A. Huppert ◽  
Michael D. Green ◽  
Luke Kim ◽  
Christine Chow ◽  
Yan Leyfman ◽  
...  

AbstractDecades of advancements in immuno-oncology have enabled the development of current immunotherapies, which provide long-term treatment responses in certain metastatic cancer patients. However, cures remain infrequent, and most patients ultimately succumb to treatment-refractory metastatic disease. Recent insights suggest that tumors at certain organ sites exhibit distinctive response patterns to immunotherapy and can even reduce antitumor immunity within anatomically distant tumors, suggesting the activation of tissue-specific immune tolerogenic mechanisms in some cases of therapy resistance. Specialized immune cells known as regulatory T cells (Tregs) are present within all tissues in the body and coordinate the suppression of excessive immune activation to curb autoimmunity and maintain immune homeostasis. Despite the high volume of research on Tregs, the findings have failed to reconcile tissue-specific Treg functions in organs, such as tolerance, tissue repair, and regeneration, with their suppression of local and systemic tumor immunity in the context of immunotherapy resistance. To improve the understanding of how the tissue-specific functions of Tregs impact cancer immunotherapy, we review the specialized role of Tregs in clinically common and challenging organ sites of cancer metastasis, highlight research that describes Treg impacts on tissue-specific and systemic immune regulation in the context of immunotherapy, and summarize ongoing work reporting clinically feasible strategies that combine the specific targeting of Tregs with systemic cancer immunotherapy. Improved knowledge of Tregs in the framework of their tissue-specific biology and clinical sites of organ metastasis will enable more precise targeting of immunotherapy and have profound implications for treating patients with metastatic cancer.


2021 ◽  
Vol 22 (4) ◽  
pp. 1886
Author(s):  
Jun Nakayama ◽  
Yuxuan Han ◽  
Yuka Kuroiwa ◽  
Kazushi Azuma ◽  
Yusuke Yamamoto ◽  
...  

Metastasis is a complex event in cancer progression and causes most deaths from cancer. Repeated transplantation of metastatic cancer cells derived from transplanted murine organs can be used to select the population of highly metastatic cancer cells; this method is called as in vivo selection. The in vivo selection method and highly metastatic cancer cell lines have contributed to reveal the molecular mechanisms of cancer metastasis. Here, we present an overview of the methodology for the in vivo selection method. Recent comparative analysis of the transplantation methods for metastasis have revealed the divergence of metastasis gene signatures. Even cancer cells that metastasize to the same organ show various metastatic cascades and gene expression patterns by changing the transplantation method for the in vivo selection. These findings suggest that the selection of metastasis models for the study of metastasis gene signatures has the potential to influence research results. The study of novel gene signatures that are identified from novel highly metastatic cell lines and patient-derived xenografts (PDXs) will be helpful for understanding the novel mechanisms of metastasis.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1641
Author(s):  
Josep Tarragó-Celada ◽  
Marta Cascante

Metabolic adaptation is emerging as an important hallmark of cancer and metastasis. In the last decade, increasing evidence has shown the importance of metabolic alterations underlying the metastatic process, especially in breast cancer metastasis but also in colorectal cancer metastasis. Being the main cause of cancer-related deaths, it is of great importance to developing new therapeutic strategies that specifically target metastatic cells. In this regard, targeting metabolic pathways of metastatic cells is one of the more promising windows for new therapies of metastatic colorectal cancer, where still there are no approved inhibitors against metabolic targets. In this study, we review the recent advances in the field of metabolic adaptation of cancer metastasis, focusing our attention on colorectal cancer. In addition, we also review the current status of metabolic inhibitors for cancer treatment.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Yeojin Do ◽  
Jin Gu Cho ◽  
Ji Young Park ◽  
Sumin Oh ◽  
Doyeon Park ◽  
...  

Cancer metastasis is the primary cause of cancer-related death and metastatic cancer has circulating-tumor cells (CTCs), which circulate in the bloodstream before invading other organs. Thus, understanding the precise role of CTCs may provide new insights into the metastasis process and reduce cancer mortality. However, the molecular characteristics of CTCs are not well understood due to a lack of number of CTCs. Therefore, suspension cells were generated from MDA-MB-468 cells to mimic CTCs, and we investigate the microRNA (miRNA)-dependent molecular networks and their role in suspension cells. Here, we present an integrated analysis of mRNA and miRNA sequencing data for suspension cell lines, through comparison with adherent cells. Among the differentially regulated miRNA–mRNAs axes, we focus on the miR-146a-Neuropilin2 (NRP2) axis, which is known to influence tumor aggressiveness. We show that miR-146a directly regulates NRP2 expression and inhibits Semaphorin3C (SEMA3C) signaling. Functional studies reveal that miR-146a represses SEMA3C-induced invasion and proliferation by targeting NRP2. Finally, high-NRP2 is shown to be associated with poor outcomes in breast cancer patients. This study identifies the key role of the miR-146a–NRP2 signaling axis that is critical for the regulation of migration and invasion in CTC-mimicking cells.


2021 ◽  
Vol 6 (8) ◽  

Metastasis is one the most common pathways of progression of rectal cancer. Rectal cancer metastases spread through lymphatic and blood vessels, giving metastases generally into locoregional lymphatic nodeslymphogenic metastasis and also liver and lung-hematogenic metastasis. The metastasizing process depends on creation of premetastatic niche-giving the cancer cells a prolific condition. A case of 73 years old male patient with a rectal cancer and metastases in locoregional lymphatic nodes and an atypical metastasis in the gingiva of the maxillary premolars had been accepted in the clinic of General and Liver-Pancreatic Surgery, University Hospital Alexandrovska, Sofia, Bulgaria.


2020 ◽  
Author(s):  
Suzann Duan ◽  
Senny Nordmeier ◽  
Aidan E. Byrnes ◽  
Iain L. O. Buxton

AbstractMetastasis accounts for over 90% of cancer-related deaths. The mechanisms guiding this process remain unclear. Secreted nucleoside diphosphate kinase A and B (NDPK) support breast cancer metastasis. Proteomic evidence confirms their presence in breast cancer-derived extracellular vesicles (EVs). We investigated the role of EV-associated NDPK in modulating the host microenvironment in favor of pre-metastatic niche formation. We measured NDPK expression and activity in EVs isolated from triple-negative breast cancer (MDA-MB-231) and non-tumorigenic mammary epithelial (HME1) cells using flow cytometry, western blot, and ATP assay. We evaluated the effects of EV-associated NDPK on endothelial cell migration, vascular remodeling, and metastasis. We further assessed MDA-MB-231 EV induced-proteomic changes in support of pre-metastatic lung niche formation. NDPK-B expression and phosphotransferase activity were enriched in MDA-MB-231 EVs that promote vascular endothelial cell migration and disrupt monolayer integrity. MDA-MB-231 EV-treated mice demonstrate pulmonary vascular leakage and enhanced experimental lung metastasis, whereas treatment with an NDPK inhibitor or a P2Y1 purinoreceptor antagonist blunts these effects. We identified perturbations to the purinergic signaling pathway in experimental lungs, lending evidence to support a role for EV-associated NDPK-B in lung pre-metastatic niche formation and metastatic outgrowth.


2020 ◽  
Vol 48 (2-3) ◽  
pp. 116-118
Author(s):  
Damir Danolić ◽  
◽  
Luka Marcelić ◽  
Ilija Alvir ◽  
Ivica Mamić ◽  
...  

Metastases to the female genital tract from extra-genital primary cancers are uncommon and usually occur during widespread metastatic disease. Breast cancers are the most frequent primaries, predominantly the lobular type. Here, we report a case of a 55-year-old woman with breast cancer endometrial metastasis who presented with postmenopausal vaginal bleeding. We highlight the importance of endometrial sampling to confirm the diagnosis and distinguish primary from metastatic cancer of the endometrium since the treatment and prognosis of these conditions are entirely different.


Sign in / Sign up

Export Citation Format

Share Document