scholarly journals Preparation of PP/PP-g-MAH/C15A Nanocomposite by Melt Extrusion Process and Comparative Study of its Mechanical and Non-Isothermal Crystallization Behaviour

Author(s):  
Rajesh Kumar Sahoo

Nanocomposite films have been prepared by melt blending method with the help of twin screw extruder using polymer polypropylene(PP)nucleating agent like organically modified nanoclay at optimum loading condition. Compatibilizers such as polypropylene grafted maleic anhydride (PP-g-MAH) were used for better compatibility between polymer matrix and filler. The effect of organoclay on nucleation effect and subsequent incremental values in mechanical and thermal behavior of different nanocomposite films has been investigated and explained with justifications. The tensile properties have shown to be improved in presence of clay nanoparticles due to resistance exerted by clay layers against plastic deformation of the polymer. Thermal properties measured by differential scanning calorimeter shows increased crystallization temperature of the nanocomposites in presence of clay particles and compatibilizer of optimum concentration.

2021 ◽  
Vol 36 (4) ◽  
pp. 358-366
Author(s):  
A. Ghanbari ◽  
M.-C. Heuzey ◽  
P. J. Carreau

Abstract Polyethylene terephthalate (PET) films were prepared by cast extrusion using a twin-screw extruder with a severe screw profile. The effect of an organically modified montmorillonite on thermal, mechanical, optical, and barrier properties of the PET films were investigated. Morphological characterization of the nanocomposite films was performed by employing wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) followed by image analysis. The results unfold a mixed morphology for the nanocomposite films with more than 95% exfoliated and intercalated silicate layer structures, depending on the screw rotation speed. The remarkable dispersion of the organoclay particles at the nano-level is discussed in terms of solubility parameter and favorable interactions between PET macromolecules and organic modifier of the nanoclay. The crystal content of the nanocomposite films and their cold and hot crystallization temperatures confirmed the role of silicate nanolayers as a heterogeneous nucleating agent. While all nanocomposite films exhibit higher haze values in comparison to the neat PET samples, incorporation of 2 wt% nanoclay brought about 25% increase in tensile modulus and barrier properties. A range of screw rotation speeds with optimized properties in terms of haze, morphology, thermal, mechanical, and barrier properties is suggested.


2011 ◽  
Vol 45 (23) ◽  
pp. 2447-2453 ◽  
Author(s):  
N.G. Shimpi ◽  
S. Mishra

Column chromatographic technique was used for improvement in d-spacing of montomorillonite using quaternary ammonium salt as an intercalent with a cation exchange capacity of 110 meq/100 g. The modified clay was then referred as organically modified montomorillonite (OMMT). Poly(vinyl chloride) (PVC) nanocomposites were prepared through direct melt compounding on a conventional twin screw extruder with variation in mass percentage of loadings (3–12%). Due to improved d-spacing of OMMT the polymer chains get exfoliated in between the plates of clay and dispersed uniformly. The properties of the nanocomposites were found to be appreciable up to 12 mass% loading of OMMT. Rheological data like torque, fusion time, viscosity, and shear rate were also recorded on Brabender Plasticorder. The improvement in properties with increase in amount of OMMT loading was evidenced from reduction in shear viscosity and torque. Also nanoclay is acting as a lubricating agent with packing effect, which reduces the torque with decrease in viscosity. Moreover, a strong interaction between PVC molecules and nanolayers, which leads to greater nucleation with, improved d-spacing. Due to the soft nature of OMMT and improvement in d-spacing, the processing of PVC becomes easier. Also it is noteworthy that nanoclay may be attributed as a nucleating agent.


2007 ◽  
Vol 334-335 ◽  
pp. 649-652
Author(s):  
Ulku Yilmazer ◽  
Elif Alyamac

The effects of component concentrations and addition order of the components, on the final properties of ternary nanocomposites composed of amorphous poly (ethylene terephthalate) matrix, organically modified clay, and an ethylene / methyl acrylate / glycidyl methacrylate (E-MAGMA) terpolymer were studied. All formulations were prepared by melt compounding of the components with a two-step mixing procedure in a corotating twin-screw extruder. Considering the X-Ray Diffraction, SEM, impact and strain at break results, the best sequence of component addition was the one in which PET was first compounded with E-MA-GMA, later this mixture was compounded with the organoclay in a subsequent run. In this mixing order, the polymer-impact modifier matrix mixture prepared in the first extrusion run has higher melt viscosity than pure PET, thus this matrix can apply high shear stresses on the clay particles and delaminate the clay layers resulting in the best mechanical properties.


2013 ◽  
Vol 554-557 ◽  
pp. 1707-1714
Author(s):  
Alain Guinault ◽  
Gaelle Dutarte ◽  
Majdi Boufarguine ◽  
Guillaume Miquelard-Garnier ◽  
Cyrille Sollogoub

Poly(lactic acid) (PLA) is a biodegradable thermoplastic polyester derived from renewable resources which may replace conventional polymers for some applications. To overcome some of its limitations such as poor gas barrier properties and low elongation at break, one method is to blend PLA with small amounts of other bio-based polymers. In this study, two processes, eg classical twin screw extrusion and a multilayer co-extrusion process have been used to combine PLA and poly(3-hydroxybutyrate-co-3-valerate) PHBV to obtain films with different blend morphologies. The effect of the morphology on the crystallinity has been studied and has hightlightned new behavior of PHBV. The addition of a nucleating agent in the PHBV to modify its crystallinity, has also been studied.


Author(s):  
Dillip Kumar Behera ◽  
Kampal Mishra ◽  
Padmolochan Nayak

In this present work, chitosan (CS) crosslink with polyaniline (PANI) with montmorilonite (MMT) called as (CSPANI/MMT) and CS crosslink with PANI without MMT called as (CS-PANI) were prepared by employing the solution casting method. Further the formation of nanocomposites CS-PANI/MMT and CS-PANI were investigated using XRD, FTIR, SEM and tensile strength. Water uptake and swelling ratio of the CS-PANI and CS-PANI/MMT were found to decrease with increase in concentration of clay. Mechanical properties of the CS-PANI and CS-PANI/MMT were assessed in terms of tensile strength and extensibility using texture analyzer. Increase in tensile strength and reduction in extensibility was reported with increase in the nanoclay content. In vitro drug release study on CS-PANI and CS-PANI/MMT indicated pronounced sustained release of doxorubicin by the incorporation of clay particles in the CS polymer matrix. Overall CSPANI/MMT nanocomposite films exhibited improved mechanical and sustained drug release properties than CS-PANI.


Impact ◽  
2018 ◽  
Vol 2018 (3) ◽  
pp. 26-28
Author(s):  
Jonathan Dawson ◽  
Richard Oreffo

Gels made from clay could provide an environment able to stimulate stem-cells due to their ability to bind biological molecules. That molecules stick to clay has been known by scientists since the 1960s. Doctors observed that absorption into the blood stream of certain drugs was severely reduced when patients were also receiving clay-based antacid or anti-diarrhoeal treatments. This curious phenomenon was realized to be due to binding of the drugs by clay particles. This interaction is now routinely harnessed in the design of tablets to carefully control the release and action of a drug. Dr Dawson now proposes to use this property of clay to create micro-environments that could stimulate stem cells to regenerate damaged tissues such as bone, cartilage or skin. The rich electrostatic properties of nano (1 millionth of a millimetre) -scale clay particles which mediate these interactions could allow two hurdles facing the development of stem-cell based regenerative therapies to be overcome simultaneously. The first challenge - to deliver and hold stem cells at the right location in the body - is met by the ability of clays to self-organise into gels via the electrostatic interactions of the particles with each other. Cells mixed with a low concentration (less than 4%) of clay particles can be injected into the body and held in the right place by the gel, eliminating, in many situations, the need for surgery. Clay particles can also interact with large structural molecules (polymers) which are frequently used in the development of materials (or 'scaffolds'), designed to host stem cells. These interactions can greatly improve the strength of such structures and could be applied to preserve their stability at the site of injury until regeneration is complete. While several gels and scaffold materials have been designed to deliver and hold stem cells at the site of regeneration, the ability of clay nanoparticles to overcome a second critical hurdle facing stem-cell therapy is what makes them especially exciting. Essential to directing the activity of stem-cells is the carefully controlled provision of key biological signalling molecules. However, the open structures of conventional scaffolds or gels, while essential for the diffusion of nutrients to the cells, means their ability to hold the signalling molecules in the same location as the cells is limited. The ability of clay nano-particles to bind biological molecules presents a unique opportunity to create local environments at a site of injury or disease that can stimulate and control stem-cell driven repair. Dr Dawson's early studies investigated the ability of clay gels to stimulate the growth of new blood vessels by incorporating a key molecular signal that stimulates this process, vascular endothelial growth factor (VEGF). In a manner reminiscent of the observations made in the 60s, Dr Dawson and colleagues observed that adding a drop of clay gel to a solution containing VEGF caused, after a few hours, the disappearance of VEGF from the solution as it became bound to the gel. When placed in an experimental injury model, the gel-bound VEGF stimulated a cluster of new blood vessels to form. These exciting results indicate the potential of clay nanoparticles to create tailor-made micro-environments to foster stem cell regeneration. Dr Dawson is developing this approach as a means of first exploring the biological signals necessary to successfully control stem cell behaviour for regeneration and then, using the same approach, to provide stem cells with these signals to stimulate regeneration in the body. The project will seek to test this approach to regenerate bone lost to cancer or hip replacement failure. If successful the same technology may be applied to harness stem cells for the treatment of a whole host of different scenarios, from burn victims to those suffering with diabetes or Parkinson's.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2128
Author(s):  
Paulo F. Teixeira ◽  
José A. Covas ◽  
Loïc Hilliou

The dispersion mechanisms in a clay-based polymer nanocomposite (CPNC) during twin-screw extrusion are studied by in-situ rheo-optical techniques, which relate the CPNC morphology with its viscosity. This methodology avoids the problems associated with post extrusion structural rearrangement. The polydimethylsiloxane (PDMS) matrix, which can be processed at ambient and low temperatures, is used to bypass any issues associated with thermal degradation. Local heating in the first part of the extruder allows testing of the usefulness of low matrix viscosity to enhance polymer intercalation before applying larger stresses for clay dispersion. The comparison of clay particle sizes measured in line with models for the kinetics of particle dispersion indicates that larger screw speeds promote the break-up of clay particles, whereas smaller screw speeds favor the erosion of the clay tactoids. Thus, different levels of clay dispersion are generated, which do not simply relate to a progressively better PDMS intercalation and higher clay exfoliation as screw speed is increased. Reducing the PDMS viscosity in the first mixing zone of the screw facilitates dispersion at lower screw speeds, but a complex interplay between stresses and residence times at larger screw speeds is observed. More importantly, the results underline that the use of larger stresses is inefficient per se in dispersing clay if sufficient time is not given for PDMS to intercalate the clay galleries and thus facilitate tactoid disruption or erosion.


2013 ◽  
Vol 94 (1) ◽  
pp. 687-694 ◽  
Author(s):  
Manja Kurečič ◽  
Majda Sfiligoj Smole ◽  
Karin Stana-Kleinschek

2013 ◽  
Vol 80 (3) ◽  
Author(s):  
Thelma G. Manning ◽  
Joseph Leone ◽  
Martijn Zebregs ◽  
Dinesh R. Ramlal ◽  
Chris A. van Driel

In order to eliminate residual solvents in ammunition and to reduce the emissions of volatile organic compounds to the atmosphere, the U.S. Army ARDEC has teamed with TNO in developing a new process for the production of solventless propellant for tank ammunition. To reduce the costs of solventless propellants production, shear roll mill and continuous extrusion processing was investigated. As described in this paper JA-2 a double base propellant cannot be processed without solvent by the extrusion process. An alternative JA-2 equivalent propellant was defined. The aim of this work is to demonstrate the manufacturing of this propellant by solventless continuous twin screw extrusion processing while maintaining gun performance characteristics of conventional JA-2 propellant. This is elucidated by explicitly researching the relationship between interior ballistic properties of the gun propellant and utilizing a continuous manufacturing process. Processing conditions were established, and the propellant was manufactured accordingly. The extruded propellant has the desired properties, which resulted in a comparable gun performance as the conventional JA-2 propellant.


2014 ◽  
Vol 92 (9) ◽  
pp. 1021-1025 ◽  
Author(s):  
Bandar Ali Al-Asbahi ◽  
Mohammad Hafizuddin Haji Jumali

The influence of colloidal TiO2 nanoparticle contents on the optical properties of poly (9,9′-di-n-octylfluorenyl-2,7-diyl) conjugated polymer (PFO) has been investigated. The solution blending method was used to prepare homogenous PFO/TiO2 nanocomposite. The nanocomposite films were prepared on glass substrates using the spin-coating technique. The films were divided into two groups, the first was left to dry at room temperature while the second was heat-treated at 120 °C for 1 h. Absorption and emission spectra showed that the PFO existed in α- and β-phases morphology having monomeric, excimeric, and double excimeric states. In addition, both spectra revealed that TiO2 contents and heat treatment temperature extended the conjugation length of PFO. Finally, emission spectra for both cases exhibited decreasing in the line width of zero-phonon emission spectra and increasing in the vibronic splitting energy, upon increment of the TiO2, led to a significant increase in π-electron delocalization and lower degree in chain disorder.


Sign in / Sign up

Export Citation Format

Share Document