scholarly journals Studi Pembuatan Edible Film Gel Okra (Abelmoschus esculentus L.) dengan Penambahan Pati Singkong

2021 ◽  
Vol 4 (1) ◽  
pp. 94-108
Author(s):  
Siti Mukaromatul Muslimah ◽  
Warkoyo Warkoyo ◽  
Sri Winarsih

Edible film is an organic material packaging that has plastic-like properties but is biodegradable. The components of the edible film include hydrocolloids. Okra gel is a long chain hydrocoloid polysaccharide with a high molecular weight and a constituent protein containing both hydrophilic and hydrophobic substances. The hydrophilic characteristics are used to improve the physical properties of solubility. Meanwhile, hydrophobic characteristics are used to improve barrier properties (WVTR). Okra (Abelmoschus esculentus L.) is one of the cultivated plants that is currently underutilized by the community but has benefits and high nutritional content. The addition of cassava starch aims to increase the strength of the edible film. The purpose of this study was to determine the use of okra gel proportion and cassava starch concentration in making edible films which can produce edible film characteristics that meet the standards.This study used a factorial randomized block design (RBD). The first factor is the ratio of okra gel and distilled water (1: 3; 1: 1; 3: 1, 1:0). The second factor is the concentration of cassava starch (2.5% and 5% (w / v)). The parameters tested were yield of raw materials, thickness, solubility, transparency, tensile strength, elongation, WVTR (Water Vapor Transmison Rate) and SEM (Scanning Electron Microscopy).The results showed that there was no interaction between okra gel and cassava starch. However, the comparison of okra gel and distilled water had a significant effect on the transparency value with an average of 0.89-1.60 A546 / mm. The concentration of cassava starch has a significant effect on transparency 0.89-1.60 A546 / mm, tensile strength 0.97-2.33%. Edible film with the best treatment was obtained in G2P1 treatment (ratio of okra gel and distilled water (1: 1) and 2.5% cassava starch) with a thickness of 0.08mm, transparency 0.58A546 / mm, WVTR 3.87g / m2 / 24h, elongation 9.24%, tensile strength 0.74MPa and solubility 23.56%. And SEM analysis results show uneven morphology.

2014 ◽  
Vol 6 (1) ◽  
pp. 27 ◽  
Author(s):  
Desi Mustika Amaliyah

Durian (Durio zibethinus) and cempedak (Artocarpus integer) peels waste are not used by the society. The research aim is to extract pectin from durian and cempedak peels and to formulate the pectin into edible films for food packaging. The research stages were first pre-treatment of durian and cempedak peels, pectin extraction, pectin drying, and  pectin application as edible films with concentration of 0%, 5%, and 15%. Based on this research it was concluded that pectin can be extracted from durian and cempedak peels with yield result of 27.97 % and 55.58 %, respectively. Edible film obtained has  similar characteristics between raw materials cempedak and durian peels. The higher concentration of cempedak peel  pectin increased the thickness, but decreased the tensile strength and elongation at a concentration of 15%. While in edible films from durian peel pectin, the higher concentration of pectin decreased the thickness of edible film on pectin concentration of 15%, lowered tensile strength and raised the edible film elongation.Keywords: waste, durian, cempedak, pectin extraction, edible film


2020 ◽  
Vol 3 (1) ◽  
pp. 26
Author(s):  
Devi Dwi Siskawardani ◽  
Warkoyo Warkoyo ◽  
Anggit Ayu Pradana Siwi

Edible films are thin layers made from hydrocolloids, lipids, and their combinations, functioning as a barrier to mass transfer. The hydrocolloid source that commonly used for the edible film is starch. Lesser yam has the potential to be developed into food packaging products. It has a high starch yield (21.4%). The starch properties, which usually obstruct the edible film production are not resistant to high temperature, it produces a starch suspension with viscosity and ability to form a gel is not uniform, cannot stand in acidic conditions, does not resist stirring, limited solubility in water, and starch gel is easy to syneresis and brittle. This study aimed to investigate the effect of glycerol and Aloe vera concentration on the physical and mechanical edible film. Randomized complete block design (RCBD) factorial with two factors was adopted. The first factor was Aloe vera concentration (0, 1%, 0.2% and 0.3% b / v), and the second factor wasglycerol concentration (17.5, 22.5 and 27.5% v/b). The parameters tested included thickness, tensile strength, elongation, solubility, transparency, and water vapor transmission rate (WVTR). The results showed an interaction between the addition of glycerol and Aloe vera to thickness, tensile strength, solubility, transparency, and WVTR. The best characteristics of edible film were produced by the addition of glycerol 17.5% and Aloe vera0.1% with the thickness (0.11 mm), tensile strength (2.03 MPa), elongation (15.38%), solubility (64.44%), transparency (2.88 mm-1), and WVTR (13.27 g m-2 24 h-1).


2021 ◽  
Vol 4 (1) ◽  
pp. 43
Author(s):  
Reno Susanto ◽  
W Revika ◽  
Irdoni Irdoni

Edible film is a packaging that has the advantage of being easily degraded so that it does not cause environmental problems such as plastic waste which can pollute the environment. Edible film is considered to have good prospects for application in food ingredients, one of which is meat, because meat has a limited shelf life. The addition of antimicrobial ingredients to the edible film in the form of essential oil of basil leaves is useful for reducing microbial growth. The purpose of this study was to make edible films to extend the shelf life of frozen meat, utilize banana peels and durian seeds as the main ingredients for making edible films and use basil essential oil as an antimicrobial agent. The stages of activities carried out in this study included the preparation of raw materials for waste banana peels, durian seeds, and basil leaves. This stage includes the extraction process of each ingredient that produces pectin from banana peels, starch from durian seeds, and essential oil from basil leaves. Furthermore, the making of edible films from these raw materials varied the ratio between the mass of pectin and starch. The formed edible films were analyzed using FTIR, attractiveness test, and microbial growth testing by comparing meat coated with edible film and meat not coated with edible film. The characteristics of the edible film produced are 0.1 mm thick with a tensile strength value of 64.65 MPa - 75.34 MPa and a percent elongation value of 0.318% - 0.36%. The best edible film was produced at a ratio of 4: 1 (pectin: starch) with the addition of antimicrobials which had a film thickness of 0.1 mm with a tensile strength value of 75.34 MPa and 0.35% elongation percent.


2020 ◽  
Vol 147 ◽  
pp. 03003
Author(s):  
Novia Racmayani ◽  
Amir Husni

Edible film can be used for food packaging. The main raw materials for edible film were alginates and plasticizers including glycerol and olive oil. This study aims to determine the characteristics of edible film composed of alginate, glycerol and olive oil. The study was carried out through the manufacture of edible films composed of alginates with various concentrations (2, 3, 4, 5 and 6%, w / v), 10% glycerol and 0.01% olive oil. Characteristics of edible film was observed including thickness, tensile strength, water vapor transmission rate, solubility and elongation. The results showed that the products met the edible film standard of the Japanese Industrial Standard. Concentration of alginate used had significant effect on thickness, tensile strength, solubility and elongation of the edible film. The films with 6% concentration of alginate showed optimum results with thickness 0,227 ± 0,008 mm, tensile strength 3,097 ± 0,384 MPa, elongation 86,682 ± 5,090 %, solubility 8,690 ± 2,892 % and water vapor transmission rate 45,477 ± 6,262 g/m2/24 h.


2021 ◽  
Vol 4 (1) ◽  
pp. 82-93
Author(s):  
Nur Aini Dwi Cahyo ◽  
Warkoyo Warkoyo ◽  
Rista Anggriani

Red bean starch is a food ingredient that has a high starch content, which can be used as an edible film. Edible films from the starch group still have shortcomings, namely having brittle and stiff properties, so it is necessary to add other materials to improve the properties of the edible film , namely by adding okra gel. The addition of okra gel is expected to improve the physical and mechanical properties of the edible film. The purpose of this study was to determine the interaction with the addition of variations in the concentration of red bean starch and okra gel on the physical and mechanical characteristics of the edible film. This research consists of two research factors. The first factor is the concentration of red bean starch which consists of 3 levels, namely 4%; 5%; 6; (b / b). The second factor was the concentration of okra gel which consisted of 3 levels, namely 3%; 8%; 13% (w / v). The experiment used a factorial randomized block design (RBD). Observation parameters include analysis of thickness, transparency, tensile strength, elongation, water vapor transmission rate and solubility. The results of this study indicate that there is no interaction between the addition of red bean starch and okra gel on thickness, transparency, tensile strength, elongation, water vapor transmission rate and solubility edible film. The best treatment with results that were close to standard was edible film with a concentration of 5% (w / w) red bean starch and 3% (w / v) of okra gel concentration. The results of the best treatment were 0.16 mm thickness, 4.87 MPa tensile strength, 18.02% elongation, 4.73 g / m2/ day WVTR, 45.14% solubility and 3.98 A / mm transparency.


2016 ◽  
Vol 36 (03) ◽  
pp. 247 ◽  
Author(s):  
Febby Jeanry Polnaya ◽  
La Ega ◽  
Devidson Wattimena

The purpose of this study was to evaluate the effect of the addition of several glycerol concentrations in the making of edible film from native and phosphate sago starch on physical, mechanical and barrier properties of the film. A completely randomized experimental design was applied in this study consisting of two factors of treatments, i.e.: native and phosphate sago starch, and the second factor was glycerol concentration with three levels of treatments, i.e.: 0.5, 1.0, and 1.5 % (w/w). The films were characterized for tensile strength, elongation, solubility, transparency, and water vapor transmission rate. Edible films have produced characteristics for tensile strength from 3.05 to 31.49 MPa, elongation from 3.03 to 20.94 %, solubility from 33.44 to 42.43 %, transparency from 0.59 to 4.14 %, and water vapour transmission rate from 7.76 to 15.80 g/m2.h. Glycerol was found to affect the increase of elongation, solubility, and water vapour transmission rate, as well as the decrease of its tensile strength and transparancy. The films made from sago starch phosphate showed to increase the solubility and to have significant effect compared with native sago starch, but not affecting the other properties. ABSTRAKTujuan penelitian ini adalah untuk mempelajari pengaruh penambahan beberapa konsentrasi gliserol pada pembuatan edible film dari pati sagu alami dan pati sagu fosfat terhadap sifat fisik, mekanik dan barrier film. Rancangan yang digunakan adalah rancangan acak lengkap yang terdiri dari dua faktor yaitu perlakuan jenis pati sagu dengan dua taraf perlakuan yaitu: pati sagu alami dan pati sagu fosfat dan tiga taraf konsentrasi gliserol yaitu: 0,5, 1,0 dan 1,5 % (b/b). Peubah yang diamati adalah tensile strength¸ elongasi, daya larut, transparansi, dan laju transmisi uap air. Karakteristik edible film yang dihasilkan meliputi tensile strength adalah 3,05 - 31,49 MPa, elongasi 3,03 - 20,94 %, daya larut 33,44 - 42,43 %, transparansi 0,59 - 4,14 %, dan laju transmisi uap air 7,76 - 15,80 g/m2.jam. Penambahan gliserol menyebabkan elongasi, daya larut, dan laju transmisi uap air meningkat, tetapi tensile strength dan transparansinya menurun. Perlakuan pati sagu fosfat hanya menyebabkan daya larut film meningkat, tetapi tidak untuk sifat-sifat film lainnya.Kata kunci: Edible film; gliserol; pati sagu alami; pati sagu fosfat


2020 ◽  
Vol 147 ◽  
pp. 03004
Author(s):  
Maula Yasinta Dewi ◽  
Amir Husni

The most used packaging material was plastic, but can cause environmental problems because it was not easily degraded. Therefore, it was necessary to look for alternative packaging materials that are easily biodegraded including edible film. The main raw materials for edible films were alginates and plasticizers including glycerol and sunflower oil. The objective of this study was to determine the characteristics of edible film composed of alginate, glycerol and sunflower oil. The study was carried out through the manufacture of edible films composed of various alginates concentrations (2, 3, 4, 5 and 6%), 10% glycerol and 0.01% sunflower oil. The characteristics tested included thickness, tensile strength, elongation, solubility, and rate of water vapor transmission. The results showed that all treatments met the edible film standard of the Japanese Industrial Standard. The various alginate concentrations used did not significantly influence the water vapor transmission rate and tensile strength but significantly affected the elongation, solubility and thickness of the edible film.


2018 ◽  
Vol 31 ◽  
pp. 03012
Author(s):  
Endah Sri Wahyuni ◽  
Fahmi Arifan

Edible film is a thin layer (biodegradable) used to coat food and can be eaten. In addition edible film serves as a vapor transfer inhibitor, inhibits gas exchange, prevents aroma loss, prevents fat transfer, improves physical characteristics, and as an additive carrier. Edible film made of cassava starch, glycerol and chitosan. Cassava starch is used as raw material because it contains 80% starch. Glycerol serves as a plasticizer and chitosan serves to form films and membranes well. The purpose of this research is to know the characteristic test of edible film by using ANOVA analysis, where the variable of drying of the oven is temperature (70°C, 80°C, 90°C) and time for 3 hours and variables change chitosan (2 gr, 3 gr, 4 gr). The result of this research was obtained the most optimum for water content and water resistance in temperature variable 80 °C and chitosan 4 gr. The best edible films and bubbles on temperature variables are 80 °C and chitosan 4 gr.


2021 ◽  
Vol 328 ◽  
pp. 08009
Author(s):  
Ni Ketut Sari ◽  
Adelia Hayu Regita ◽  
Dimas Wahyu Dwi Putra ◽  
Dira Ernawati ◽  
Widi Wurjani

The increase in plastic production worldwide has created quite a serious environmental problem. Edible film is an alternative packaging that can decompose naturally, one of the materials that can be used to make edible films is starch. This study aims to determine the composition of corn cob starch and plasticizers that can produce edible films with the best properties. The starch used is derived from corn cobs and the plasticizers used are glycerol and sorbitol. The edible film in this study was made by the casting method by dispersing the raw materials, heating the mixture, printing the edible film and drying the edible film. This research was conducted with variations in the corncob of 5, 6 and 7 in grams and the variation of the ratio of glycerol to sorbitol plasticizer is 2:8; 3:7; 5:5; 7:3; 8:2 (ml). The more starch content increases the thickness of the edible film and tensile strength, but the elongation and water vapor permeability decreases, the best edible film is obtained at the glycerol-sorbitol composition ratio of 5:5 with the amount of corncob starch of 7 grams.


2019 ◽  
Vol 1 (1) ◽  
pp. 9-13
Author(s):  
Nisa Nur Khasanah ◽  
Vina Amalia ◽  
Baiq Vera El Viera ◽  
Asti Sawitri

Edible films made of Na-alginate from brown algae have great potential to be developed as brown algae have a fairly high abundance in Indonesia but have not been widely used. Therefore, in this study conducted by making edible films made from Na-alginate modified by the addition of hydrocolloids carrageenan and glycerol plasticizier. The addition of carrageenan biopolymers is the property of the produced Edible film. The use of glycerol as a plasticizer aims to improve the properties of elasticity Edible films. This research method consists of two stages. First, the isolation and characterization of Na-alginate. Both the preparation and characterization of making edible films. Na-alginate characterization results in yield of 25.68%, 10.84% moisture content, ash content of 23.79%. The carrageenan on the formula Edible films affect the characterization of the resulting films. The value of water absorption from 333.13% to 335.45% and the elongation of 26.26% to 33.34%, and the declining value of tensile strength of 8.93 MPa to 4.17 MPa and young's modulus values of 0.34 MPa to 0.22 MPa with the addition of carrageenan on an Edible film formula.


Sign in / Sign up

Export Citation Format

Share Document