scholarly journals Formulation and Evaluation of Microsponges Gel of Havan Ash for the Treatment of Acne

2020 ◽  
Vol 10 (6) ◽  
pp. 74-85
Author(s):  
Sonali Syal ◽  
Vinay Pandit ◽  
Amar Deep Ankalgi ◽  
C.P.S Verma ◽  
M.S. Ashawat

The aim of this study was to develop the Microsponges containing Havan ash composed gel formulation for the treatment of Acne. Therefore, the topical formulation containing microsponges of Havan Ash will be formulated and evaluated. The preliminary investigation was carried out for the formulation of Havan ash loaded Microsponges by using quasi emulsion solvent diffusion method (MSF1-MSF6). In the preformulation studies of Havan ash the physical description and organoleptic properties, pH, acid insoluble ash, water-soluble ash, IR spectroscopy, identification test, rheological study, atomic absorption spectroscopy is also carried out. On the basis of particle size analysis of Microsponges, percentage yield formulation MSF5 containing Microsponges formula was selected for composition of topical gel formulation. Thus the different gel base formulation (G1-G3) using Carbopol-934 (1,1.5,2.0%) was prepared by emulsification method. By considering all the relevant, physicochemical parameters, G2 gel base was selected for further loading of Havan ash containing Microsponges. The MSF5 formulation was loaded into the selected gel base G2 (1.5%). Then the formulation and evaluation of Havan ash microsponges loaded gel was done. The formulation F3 has better results than other 4 formulations. F3 have its appearance silver colour, consistency very good, Grittiness –ve, homogeneity good, wash ability very good, pH 6.3, Spreadabilty (g.cm/sec) 14.4 ± 0.77 7and viscosity (cps) 18251 ± 50.12, have good result of psychometric analysis. With the revealed results by different evaluation parameters, it is concluded that microsponges drug delivery system has become highly competitive and rapidly evolving technology and more research are carrying out to optimize cost-effectiveness and efficacy of the therapy. Keywords: Havan ash, Antimicrobial, Microsponges, Acne vulgaris, Topical gel.

Author(s):  
MUTHADI RADHIKA REDDY ◽  
SOUMYASTUTIPATNAIK

Objective: Flutrimazole is a topical antifungal agent which displays potent broad spectrum in vitro activity against dermatophytes, filamentous fungi, and yeasts. The purpose of the present study is to formulate and evaluate microspheres loaded topical gel containing flutrimazole as model drug microspheres were prepared using aqueous ionotropic gelation method. Methods: Different polymers, the different drug to polymer(s) ratio(s) and other parameters were screened to study their effects on the properties of microspheres and to optimize each parameter. The controlled release emulgel was formulated by changing the polymer ratio. Fourier transform infrared study confirmed the purity of the drug, concede no interaction between the drug and excipients and analyze the parameters affecting the morphology and other characteristics of the resultant products employing scanning electron microscopy. Results: Microspheres loaded topical gel has been shown that encapsulation and controlled release of flutrimazole could reduce the side effect while also reducing percutaneous absorption when administered to the skin. The microspheres obtained were subjected to the preformulation studies such as bulk density, tapped density, angle of repose, Carr’s index, and Hausner’s ratio the results obtained were within the limit. The microspheres were characterized by percentage yield, drug entrapment efficiency, and particle size analysis, then the optimized microspheres formulation were incorporated into the gel prepared with various polymer(s) ratio(s) and were evaluated by parameters such as visual inspection, pH measurement, spreadability studies, viscosity, and in vitro drug release using Franz diffusion cell. Conclusion: The result of studies revealed that the optimized batch shows 97.24% release in 12 h and stable for around there. The microsphere loaded gel has advantages such as efficient absorption and more drug retention time.


2019 ◽  
Vol 9 (3) ◽  
pp. 222-233
Author(s):  
Divya D. Jain ◽  
Namita D. Desai

Background: Adapalene is a promising third generation retinoid used in the topical treatment of acne vulgaris. However, the major drawback associated with conventional topical therapy of Adapalene is the ‘retinoid reaction’ which is dose-dependent and characterized by erythema, scaling and burning sensation at the application sites. Microparticulate drug delivery can play a major role in reducing side effects and providing better patient compliance due to targeted delivery. Methods: Adapalene microparticles were prepared using quasi emulsion solvent diffusion method. The effects of formulation variables including polymer ratios, amounts of emulsifier, drug loading and process variables such as stirring time and speed on the physical characteristics of microparticles were investigated. The developed microparticles were characterized by DSC and SEM. Adapalene microparticles were incorporated into Carbopol 971 NF gel for ease of topical delivery. Results: Adapalene microparticulate topical gel showed sustained drug release over 8 hours in in vitro studies. The amount of drug retained in the rat skin during ex vivo studies was higher in the microparticulate topical gel (227.43 ± 0.83 µg/cm2) as compared to the marketed formulation (81.4 ± 1.11 µg/cm2) after 8 hours indicating localized and sustained drug action that can be useful in treating acne vulgaris. The safety of optimized Adapalene gel determined by skin irritation studies performed on Sprague Dawley rats showed no irritation potential. Conclusion: Microparticles can provide promising carrier systems to deliver Adapalene, improving patient compliance due to enhanced skin deposition, localized and sustained action with reduced associated irritant effects.


2015 ◽  
Vol 667 ◽  
pp. 370-375 ◽  
Author(s):  
Xiao Hua Luo ◽  
Xin Qiu ◽  
Yu Jie Wang ◽  
Jin Hong Wu ◽  
Shang Lin Xiao

In order to study the treatment mechanism of the ionic liquid soil stabilizer, a series tests were performed for a typical soil, the red-brown clay. The basic physical parameters of typical soil were conducted by variety of tests, including particle size analysis, crucial water content coefficient, loss on ignition, organic matter content, etc. Furthermore, the treatment mechanism of the ionic soil stabilizer was analyzed, involving PH, conductivity, plasma emission spectra, scanning electron microscopy, X-ray diffraction and BET test. The results indicate: Firstly, the ionic soil stabilizer is a sulfonated oleoresin with the features of water soluble, high conductivity and strongly acidic, which exchanged with cations adsorbed on the surface of clay particles to reduce the thickness of hydrated film and the electric double layer thickness. Secondly, it reduced the mutual repulsion energy between soil particles and made the flaky particles of clay minerals contact closely. Finally, it made the particles of clay be close to each other and gradually formed larger particles. Hence, the clay became denser. Therefore, the research provided a theoretical foundation and practical basis for the wide application of the ionic soil stabilizer in China's highway construction.


2020 ◽  
Vol 10 (4) ◽  
pp. 6000-6006

This study approached the developing of grafted beta cyclodextrins (β-CD) for achievement multifunctional properties. Hyperbranched bis-MPA-polyester-16-hydroxyl, generation 2, (HBPE-2) was used as crosslinker in the presence of cobalt (Co) or nickel (Ni) acetate using emulsion technique. The resulting materials were applied in the printing paste for in situ printing of cellulosic fabrics using phthalocyanine organic pigment (C.I: pigment blue 15:3). Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM) and particle size distribution analysis using dynamic light scattering (DLS) technique were examined to illustrate the structure and morphologies of the prepared materials. Moreover, the antimicrobial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria using the agar diffusion method was also carried out. The FTIR results demonstrated that HBPE-2 can serve as a good crosslinker to obtain the grafted β-CD with high thermal stability and physical attachment relative to the uncrosslinked one. Also, TEM and particle size analysis indicated that successful metal binding to the grafted β-CD was obtained with different morphologies and low particle size relative the uncrosslinked one. All the grafted β-CD samples exhibited good antimicrobial activity up to 20 mg concentration. Besides, the prepared materials accelerated the colour fixation on the surface of the cellulosic fabric prints relative to the used conventional pigment printing under the unfavorable conditions.


Author(s):  
SOBITHARANI P ◽  
ANANDAM S ◽  
MOHAN VARMA M ◽  
VIJAYA RATNA J ◽  
SHAILAJA P

Objective: The main objective of this study was to investigate the release pattern of a poorly water-soluble drug quercetin (QU) by fabricating its cyclodextrin nanosponges. Methods: Characterization of the original QU powder and QU-loaded nanosponges was carried out by the Fourier-transformed infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and dissolution tester. The drug release pattern was subjected to various kinetic models. Results: FTIR studies confirmed the formation of inclusion complex of drug. The particle size analysis revealed that the average particle size measured by laser light scattering method is around 400–420 nm with low polydispersity index. The particle size distribution is unimodal and having a narrow range. A sufficiently high zeta potential indicates that the complexes would be stable and the tendency to agglomerate would be miniscule. TEM image revealed the porous nature of nanosponges. The dissolution of the QU nanosponges was significantly higher compared with the pure drug. Conclusion: From the kinetic study, it is apparent that the regression coefficient value closer to unity in case of Korsmeyer-Peppas model indicates that the drug release exponentially to the elapsed time. n value obtained from the Korsmeyer-Peppas plots, i.e., 0.9911 indicating non-Fickian (anomalous) transport ; thus, it projected that delivered its active ingredient by coupled diffusion and erosion.


2019 ◽  
Vol 3 (1) ◽  
pp. 01-03
Author(s):  
Stalin reddy Challa ◽  
Prasad Garrepally

The objective of the current investigation is to formulate ethyl cellulose and hydroxypropyle methyle cellulose based sustained release microspheres, containing lansoprazole as model drugs. lansoprazole is type II anti-ulcer agent when administered shows synergetic effect in their action. Microspheres were prepared by W/O/O double emulsion solvent evaporation method with different stabilizer concentration and at different speeds of emulsification while maintaining constant amount of lansoprazole. Drug excipient compatibility study was performed prior to formulation development and only compatible excipients were used in the fabrication of microspheres. Prepared microsphere formulations were characterized by percentage yield, particle size analysis, entrapment efficiency, invitro release behavior, differential scanning colorimetry (DSC) and scanning electron microscopy (SEM). SEM studies showed that the microspheres were spherical with rough surface morphology. The drug loaded microspheres showed 10.4-57.9% entrapment capacity for lansoprazole and The invitro release profile showed a slow and steady release pattern for lansoprazole. A 95-98% was releases within a period of 12 hrs . The drug release was found to be diffusion controlled mechanism. The n value of Korsmeyer Peppas equation indicated non Fickian type of diffusion.


2021 ◽  
Vol 10 (2) ◽  
pp. 48-52
Author(s):  
J Adlin Jino Nesalin ◽  
Preethi Raj M N

The main objective of this research is to evaluate a new approach for the preparation of bio adhesive nanoparticles and to design an innovative topical delivery system for curcumin which is able to enhance the drug anticancer activity. Curcumin encapsulated nanoparticles were prepared by ionic gelation method. The nanoparticles were found to be discrete, spherical with free-flowing properties and evaluated for particle size analysis, shape (scanning electron microscopy), drug encapsulation efficiency, FTIR, DSC studies and in vitro release performance. The best selected nanoparticles formulation (FS5, containing drug: polymer ratio 1:5) was incorporated into gels with a bio adhesive polymer. The Nanoencapsulated topical gels were evaluated for pH, spreadability, extrudability, viscosity, in vitro drug release, drug release kinetics, bio adhesion test, accelerated stability of selected gel formulation. In vitro drug release rate for selected Nanoencapsulated bio adhesive topical gel (FS3 gel, containing 1 % w/w of drug loaded nanoparticles and 0.6 % w/w of Carbopol 934) was found to control curcumin release over 12h. The results were then compared statistically and obtained a satisfactory correlation. Thus, in conclusion preparation protocol of Nanoencapsulated topical gel study may be adopted for a successful delivery of Curcumin for topical use.


2020 ◽  
pp. 152808372098046
Author(s):  
Nihal Atabay ◽  
Ayse Merih Sariişik ◽  
Sinem Yaprak Karavana ◽  
Seda Rençber

Benzoyl peroxide is a widely used active agent for acne vulgaris treatment that has antibacterial, anti-inflammatory, keratolytic and wound-healing properties. The common complaints for benzoyl peroxide are skin irritation and dryness. To reduce these side effects, microsponge formulations are used as an effective tool in pharmaceutical and cosmetic industries. In this study, a medical plaster was developed containing benzoyl peroxide microsponges which gives an opportunity to explore the potential of the microsponge systems in textile industry. Benzoyl peroxide microsponge was obtained by using quasi-emulsion solvent diffusion method and characterized by SEM, FT-IR, particle size analysis and porosity studies. The microsponges were applied onto 100% cotton woven fabric by using dip-coating technique. In the treatment solution, different binding agents as acrylic binder, and cross-linking agents as poly(ethylene glycol) diglycidyl ether and 1,2,3,4-butanetetracarboxylic acid were used. Microsponges were around 78.4 µm in diameter and had a spherical porous surface. SEM analyses of the treated fabrics proved that the microsponges were succesfully transferred on cotton fabrics. The drug contents of the fabrics containing Benzoyl peroxide loaded microsponge were found to be within the range of 68.512–102.873%. The in vitro drug release results show that the release from both samples was more than 40% within 6 h. The water vapor permeability of plaster prepared with acrylic binder (S1) was significantly higher than the other plasters. This study presents a novel approach for acne treatment based on textiles containing microsponges. The results revealed that microsponges had a promising potential in textile field.


2019 ◽  
Vol 10 (3) ◽  
pp. 2290-2299 ◽  
Author(s):  
Manoj K ◽  
Seenivasan P ◽  
Arul K ◽  
Senthil kumar M

Polymer Enriched Bridging liquid is a novel approach for enhancing the flow characteristics, properties, solubility and dissolution of poorly water-soluble drugs. is an orally effective II receptor antagonist used extensively for the effective management of hypertension. is a poorly water-soluble drug and an ideal candidate for this approach. PVPK30 is used as the hydrophilic polymer. Various formulations were prepared with the addition of PVPK30 in the bridging liquid by Polymer Enriched Bridging Liquid Technique (PEBL). The preparations were subjected to particle size analysis, characteristics, FTIR, differential scanning (DSC) and Scanning Electron microscopic analysis. The crystal agglomerates were found to be spherical in nature with excellent flow characteristics. The of the pure drug was found to be decreased without any drug-polymer interaction. The saturation solubility studies showed that the optimized formulation STP04 showed 30.695 folds increase in solubility in water and 29.462 folds enhancement in pH 7.5 phosphate buffer. The in drug release studies also confirmed the enhancement in dissolution rate. The stability of the prepared aggregates was determined by accelerated stability studies. The addition of polymer in the bridging liquid during crystallization stage improved the effective incorporation of the hydrophilic polymer in the aggregates. Polymer Enriched Bridging Liquid technique can be considered as an ideal technique for solubility and dissolution enhancement.


2021 ◽  
Vol 8 (10) ◽  
pp. 440-457
Author(s):  
Ponni Sujathan ◽  
Umesh Kumar Sharma

The objective of present work was formulation and evaluation of Metronidazole loaded microsponges for the management of diabetic foot ulcer via topical application and to reduce side effects. The microsponges were prepared by quasi-emulsion solvent diffusion method using different concentrations of Ethyl cellulose and Poly vinyl alcohol. The prepared microsponges were evaluated for particle size analysis, SEM, % production yield, % drug entrapment efficiency, in-vitro drug release studies, DSC and antimicrobial studies. FTIR studies shown that there was no interaction between drug and polymers. The optimum sustained release of drug around a period of 12hrs was shown by formulation F8. The n value of optimized formulation indicated that the drug release followed zero order kinetics. It was confirmed from the stability studies that the optimized formulation remained stable at 45±2℃ and 70±5% relative humidity. Keywords: Microsponges, Metronidazole, Diabetic Foot, Quasi-emulsion solvent diffusion, Sustained release, Scanning electron microscopy, Differential scanning calorimetry.


Sign in / Sign up

Export Citation Format

Share Document