scholarly journals New Era of Formulation as Silver Nanoparticles in Pharma

2021 ◽  
Vol 11 (2-S) ◽  
pp. 126-131
Author(s):  
Abhishek Soni ◽  
Ajay Kumar ◽  
Ashish Kumar ◽  
Amit Choudhary ◽  
, Happy

In various fields of science, nanoparticles of noble metals, particularly silver nanoparticles, have been widely used. Its specific properties, which can be integrated into the materials of biosensors, composite fabrics, cosmetics, antimicrobial applications, conducting materials, and electronic components, make it a very interesting topic to be studied in the fields of chemistry, biology, healthcare, electronics, and other related fields. Such unique features depending on the size, and shape of the silver nanoparticles. Various methods of preparation for the synthesis of silver nanoparticles have been reported, such as electron irradiation, laser ablation, chemical reduction and biological methods. Keywords: silver nanoparticles (AgNPs), particle size, localized surface plasmonic resonance (LSPR), characterization, application

2019 ◽  
pp. 5-15
Author(s):  
Konstantin I. Gurin ◽  
◽  
Valentina S. Menukhova ◽  
Ivan P. Pogorelskiy ◽  
Vladimir S. Lobastov ◽  
...  

Author(s):  
Umadevi M ◽  
Rani T ◽  
Balakrishnan T ◽  
Ramanibai R

Nanotechnology has great promise for improving the therapeutic potential of medicinal molecules and related agents. In this study, silver nanoparticles of different sizes were synthesized in an ultrasonic field using the chemical reduction method with sodium borohydride as a reducing agent. The size effect of silver nanoparticles on antimicrobial activity were tested against the microorganisms Staphylococcus aureus (MTCC No. 96), Bacillus subtilis (MTCC No. 441), Streptococcus mutans (MTCC No. 497), Escherichia coli (MTCC No. 739) and Pseudomonas aeruginosa (MTCC No. 1934). The results shows that B. subtilis, and E. coli were more sensitive to silver nanoparticles and its size, indicating the superior antimicrobial efficacy of silver nanoparticles. 


Author(s):  
Geetanjali Singh ◽  
Pramod Kumar Sharma ◽  
Rishabha Malviya

Aim/Objective: The author writes the manuscript by reviewing the literatures related to the biomedical application of metallic nanoparticles. The term metal nanoparticles are used to describe the nanosized metals with the dimension within the size range of 1-100 nm. Methods: The preparation of metallic nanoparticles and their application is an influential area for research. Among various physical and chemical methods (viz. chemical reduction, thermal decomposition, etc.) for synthesizing silver nanoparticles, biological methods have been suggested as possible eco-friendly alternatives. The synthesis of metallic nanoparticles is having many problems inclusive of solvent toxicity, the formation of hazardous byproducts and consumption of energy. So it is important to design eco-friendly benign procedures for the synthesis of metallic nanoparticles. Results: From the literature survey, we concluded that metallic nanoparticles have applications in the treatment of different diseases. Metallic nanoparticles are having a great advantage in the detection of cancer, diagnosis, and therapy. And it can also have properties such as antifungal, antibacterial, anti-inflammatory, antiviral and anti-angiogenic. Conclusion: In this review, recent upcoming advancement of biomedical application of nanotechnology and their future challenges has been discussed.


Author(s):  
Kazuaki Matoba ◽  
Nobuo N Noda

Summary Autophagy, which is an evolutionarily conserved intracellular degradation system, involves de novo generation of autophagosomes that sequester and deliver diverse cytoplasmic materials to the lysosome for degradation. Autophagosome formation is mediated by approximately 20 core autophagy-related (Atg) proteins, which collaborate to mediate complicated membrane dynamics during autophagy. To elucidate the molecular functions of these Atg proteins in autophagosome formation, many researchers have tried to determine the structures of Atg proteins by using various structural biological methods. Although not sufficient, the basic structural catalog of all core Atg proteins was established. In this review article, we summarize structural biological studies of core Atg proteins, with an emphasis on recently unveiled structures, and describe the mechanistic breakthroughs in autophagy research that have derived from new structural information.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2326
Author(s):  
Entesar Ali Ganash ◽  
Reem Mohammad Altuwirqi

In this work, silver nanoparticles (Ag NPs) were synthesized using a chemical reduction approach and a pulsed laser fragmentation in liquid (PLFL) technique, simultaneously. A laser wavelength of 532 nm was focused on the as produced Ag NPs, suspended in an Origanum majorana extract solution, with the aim of controlling their size. The effect of liquid medium concentration and irradiation time on the properties of the fabricated NPs was studied. While the X-ray diffraction (XRD) pattern confirmed the existence of Ag NPs, the UV–Vis spectrophotometry showed a significant absorption peak at about 420 nm, which is attributed to the characteristic surface plasmon resonance (SPR) peak of the obtained Ag NPs. By increasing the irradiation time and the Origanum majora extract concentration, the SPR peak shifted toward a shorter wavelength. This shift indicates a reduction in the NPs’ size. The effect of PLFL on size reduction was clearly revealed from the transmission electron microscopy images. The PLFL technique, depending on experimental parameters, reduced the size of the obtained Ag NPs to less than 10 nm. The mean zeta potential of the fabricated Ag NPs was found to be greater than −30 mV, signifying their stability. The Ag NPs were also found to effectively inhibit bacterial activity. The PLFL technique has proved to be a powerful method for controlling the size of NPs when it is simultaneously associated with a chemical reduction process.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 852
Author(s):  
Tárcio S. Santos ◽  
Tarcisio M. Silva ◽  
Juliana C. Cardoso ◽  
Ricardo L. C. de Albuquerque-Júnior ◽  
Aleksandra Zielinska ◽  
...  

Silver nanoparticles are widely used in the biomedical and agri-food fields due to their versatility. The use of biological methods for the synthesis of silver nanoparticles has increased considerably due to their feasibility and high biocompatibility. In general, microorganisms have been widely explored for the production of silver nanoparticles for several applications. The objective of this work was to evaluate the use of entomopathogenic fungi for the biological synthesis of silver nanoparticles, in comparison to the use of other filamentous fungi, and the possibility of using these nanoparticles as antimicrobial agents and for the control of insect pests. In addition, the in vitro methods commonly used to assess the toxicity of these materials are discussed. Several species of filamentous fungi are known to have the ability to form silver nanoparticles, but few studies have been conducted on the potential of entomopathogenic fungi to produce these materials. The investigation of the toxicity of silver nanoparticles is usually carried out in vitro through cytotoxicity/genotoxicity analyses, using well-established methodologies, such as MTT and comet assays, respectively. The use of silver nanoparticles obtained through entomopathogenic fungi against insects is mainly focused on mosquitoes that transmit diseases to humans, with satisfactory results regarding mortality estimates. Entomopathogenic fungi can be employed in the synthesis of silver nanoparticles for potential use in insect control, but there is a need to expand studies on toxicity so to enable their use also in insect control in agriculture.


DYNA ◽  
2018 ◽  
Vol 85 (206) ◽  
pp. 69-78 ◽  
Author(s):  
Wilson Agudelo ◽  
Yuliet Montoya ◽  
John Bustamante

El uso de compuestos químicos más biocompatibles y renovables para la obtención de nanopartículas metálicas con propiedades y características deseadas, se convierte en una ruta alternativa para la reducción de riesgos ambientales y del grado de incompatibilidad de estas estructuras al interactuar con modelos biológicos para su posible aplicación en el área de la salud. El propósito de este trabajo se centró en el uso de sacarosa, como agente reductor de nanopartículas de oro y plata al emplear diferentes volúmenes de hidróxido de sodio. Las nanopartículas obtenidas fueron caracterizadas mediante espectrometría UV-visible, microscopía electrónica de transmisión TEM y espectroscopia infrarroja por transformada de Fourier FTIR, la cual permitió determinar los plasmones de resonancia superficial, tamaños de partícula experimentales y teóricos, morfología y cambios estructurales en el agente reductor, así como la influencia del hidróxido de sodio en el proceso de síntesis. Los resultados obtenidos confirman la formación de nanopartículas de oro y plata mediante la previa formación de azúcares reductores. Así mismo, la oxidación del grupo funcional de la glucosa a sales de ácido carboxílico.


2014 ◽  
Vol 32 (1) ◽  
pp. 107-111 ◽  
Author(s):  
M. K. Alqadi ◽  
O. A. Abo Noqtah ◽  
F. Y. Alzoubi ◽  
J. Alzouby ◽  
K. Aljarrah

2020 ◽  
Vol 19 (04) ◽  
pp. 1950029
Author(s):  
A. G. Demchenko ◽  
V. S. Sadykova ◽  
A. V. Lyundup ◽  
N. E. Sedyakina ◽  
T. I. Gromovykh ◽  
...  

Silver nanoparticles were synthesized by chemical reduction of silver nitrate using arabinogalactan polysaccharide as a reducing agent and a stabilizer. The average size of nanoparticles, obtained by analyzing TEM-images, was 10.8[Formula: see text]nm; zeta potential [Formula: see text][Formula: see text]mV. A study of the sol by electron diffraction showed that silver in the sample is in metallic form. The resulting preparation of silver nanoparticles showed both antibacterial and antifungal activity. A pronounced antibacterial activity of silver nanoparticles was demonstrated both in relation to conditionally pathogenic gram-positive (Bacillus subtilis and B. coagulans) and gram-negative (Escherichia coli) bacteria. Silver nanoparticles also possess antifungal activity against macromycete Fomitopsis sp., as well as two strains of micromycetes Trichoderma citrinoviride and Fusarium sporotrichioides. Using the methods of light and fluorescence microscopy, MTT-analysis and Real-time cell analysis, the cytotoxic activity of silver nanoparticles was investigated on HepG2 human hepatocellular carcinoma cells. It was demonstrated that nanoparticles cause a suppression of cell metabolic and proliferative activity, as well as dose-dependent induction of cell death (average relative EC[Formula: see text] value was [Formula: see text]g/ml). The preparation of silver nanoparticles stabilized by arabinogalactan can be used in medicine, as a potential antimicrobial and antitumor agent.


Sign in / Sign up

Export Citation Format

Share Document