scholarly journals Instrumental Characterization and Antibacterial Investigation of Silver Nanoparticles Synthesized From Garcinia Kola Leaf

2019 ◽  
Vol 9 (6-s) ◽  
pp. 58-64 ◽  
Author(s):  
Sunday Adewale AKINTELU ◽  
Aderonke Similoluwa FOLORUNSO ◽  
Olabisi Theresa ADEMOSUN

The need to devise another method of synthesizing nanoparticles from sources that are eco-friendly, non-hazardous and cost effectiveness is of great importance in preventing environmental and health problems. The aim of this study was to evaluate the efficiency of Garcinia kola leaves as reducing and stabilizing agent for silver nanoparticles synthesis. The leaves of Garcinia kola obtained were authenticated, air dried, pulverized and extracted. The extract was mixed with aqueous solution of silver nitrate solution to form silver nanoparticles and were characterized using Ultra violet (UV) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The antibacterial investigation of the synthesized silver nanoparticle was carried out following the disk diffusion method. UV analysis revealed the silver surface plasmon band at 425.18 nm, The FTIR indicated -OH, -C=C- and alkane as the functional groups responsible for the stabilization of the silver nanoparticle formed. The morphological assessment from SEM and TEM analysis confirmed that the silver nanoparticle formed are spherical in shape with an average particle size of 28.80nm.The EDX analysis ascertained that the silver surface plasmon resonance at 2.8–3.2 keV was confirmed the reduction of silver ion (Ag+ to Ag0). The XRD study revealed the crystalline nature of the nanoparticles synthesized. The antibacterial investigation showed high inhibition against the growth of tested bacteria.  This study ascertained that the green synthesis of silver nanoparticle without the use of harmful solvent that are offensive to the environment is achievable.  Keywords: Silver nanoparticles, Biosynthesis, Characterization, Antibacterial activity and Garcinia kola.

Author(s):  
Rajesh Dodiya ◽  
Mrunal K Shirsat ◽  
Jitendra K Patel

Aims: In this study, the phytochemical analysis of Eucalyptus globulus leaf was analyzed and  used in synthesis of silver nanoparticles. The silver nanoparticle incorporated antimicrobial cosmeceutical cream was developed and characterized for physicochemical parameters, antimicrobial properties, and biocompatibility was evaluated. Methodology: E. globulus aqueous leaf extract was preliminary analyzed for the presence of phytochemical and confirmed using thin layer chromatography techniques. Further, a green synthesis of silver nanoparticle was accomplished using aqueous leaf extract of E. globulus. The formation of nanoparticles was confirmed and characterized by UV-vis spectrophotometer, transmission electron microscopy, dynamic light scattering, zeta potential, X-ray diffractometer, field emission scanning electron microscopy, and fourier transform infrared spectroscopy. The nanoparticles were incorporated in cream and the antimicrobial property was evaluated using agar well diffusion method. Results: The phyto-chemical evaluation of E. globulus aqueous leaf extract showed the presence of phenolic, tannins, saponnins, carbohydrate, and glycoside. Moreover, Eucalyptus globulus aqueous leaf extract exhibited antioxidant activity in a dose dependent manner. The surface plasmon resonance peak was 424 nm and functional group such as hydroxyl, carboxyl, alkyl halides, amines, carbonyl, amide groups, and phenolic compounds were present which was important for the bio-reduction, stabilization, and capping of the silver nitrate into nanoparticles. Energy dispersive x-ray (EDX) analysis showed silver as the main element present and the nanoparticles were oval in shape and 19-60 nm in size with effective diameter of 90 nm. The test cream exhibited surface roughness of ≈ 30 nm, contact angle of ≈ 100, and surface energy of ≈88 mN/m. The formulated creams were consistent, with satisfactory pH, viscosity and spreadability. Conclusion: The results demonstrated an eco-friendly and cost-effective approach to synthesis biogenic silver nanoparticles using aqueous extract of E. globulus. Eucalyptus globulus aqueous leaf extract stabilized and capped silver nanoparticles incorporated topical cream exhibited potent antimicrobial efficacy against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Yessi Rahmayani ◽  
Zulhadjri Zulhadjri ◽  
Syukri Arief

Sintesis nanopartikel perak-TCP telah dilakukan pada penelitian ini. Nanopartikel perak dibuat dengan mereduksi larutan perak nitrat dengan menggunakan ekstrak daun alpukat sebagai bioreduktor. Tricalsium Phosphate (TCP) dicelupkan kedalam nanopartikel perak membentuk komposit perak-tricalcium phosphate. Hasil analisis UV-Vis menunjukkan pembentukan puncak serapan nanopartikel perak pada panjang 445-446 nm, yakni puncak yang khas dari nanopartikel perak yang disebabkan oleh adanya fenomena Surface Plasmon Resonance (SPR). Penelitian ini menghasilkan perak-TCP dengan ukuran nanopartikel. Sesuai  hasil X-Ray Diffraction (XRD) yang menunjukkan bahwa ukuran kristal TCP adalah 64 nm dan ukuran Kristal perak dalam komposit adalah 46 nm. Hasil Scanning Electron Microscopy (SEM) menunjukan partikel perak terdistribusi dipermukaan partikel TCP. Kata Kunci: Komposit perak-TCP, nanopartikel perak, Percea americana,  tricalcium phosphate.  The silver-TCP nanoparticle synthesis was carried out in this study. Silver nanoparticles are made by reducing silver nitrate solution using avocado leaf extract as a bioreactor. Tricalcium Phosphate (TCP) is dipped into silver nanoparticles to form a silver-tricalcium phosphate composite. The UV-Vis analysis shows the formation of silver nanoparticle absorption peaks at a length of 445-446 nm, which is a typical peak of silver nanoparticles caused by the Surface Plasmon Resonance (SPR) phenomenon. X-Ray Diffraction (XRD) shows that the TCP crystal size is 64 nm and the size of the Silver Crystal in the composite is 46 nm. The results of Scanning Electron Microscopy (SEM) show silver particles distributed on the surface of TCP particles Keywords: Percea americana, silver-TCP composite, silver nanoparticle, tricalcium phosphate.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sedighe Khodadadi ◽  
Nafiseh Mahdinezhad ◽  
Bahman Fazeli-Nasab ◽  
Mohammad Javad Heidari ◽  
Baratali Fakheri ◽  
...  

Objective. Vaccinium genus plants have medicinal value, of which Vaccinium arctostaphylos (Caucasian whortleberry or Qare-Qat in the local language) is the only available species in Iran. Public tendency to use herbal remedies and natural products such as synthesized nanoparticles is increasing due to the proof of the destructive side effects of chemical drugs. Nanosilver products have been effective against more than 650 microbe types. This study was aimed at assessing the possibility of green synthesis of silver nanoparticles using Vaccinium arctostaphylos aqueous extract and at evaluating its antibacterial properties, as well. Materials and Methods. In order to synthesize silver nanoparticles, different volumes of Vaccinium arctostaphylos aqueous extract (3, 5, 10, 15, and 30 ml) were assessed with different silver nitrate solution concentrations (0.5, 1, 3, 5, and 10 mM) and different reaction time durations (1, 3, 5, 10, and 20 minutes) at room temperature using a rotary shaker with a speed of 150 rpm. Ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction analysis (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) were carried out. The antibacterial activity of the aqueous extract and the synthesized nanoparticles was evaluated, as well. Results. Silver nanoparticle formation process was confirmed with XRD analysis, transmission electron microscopy (TEM), and FTIR spectroscopy. The UV-Vis spectroscopy of silver colloidal nanoparticles showed a surface plasmon resonance peak at 443 nm under optimal conditions (3 ml aqueous extract volume, 1 mM silver nitrate solution concentration, and 3 min reaction time under sunlight exposure). The reduction of silver ions to silver nanoparticles in solution was confirmed, as well. Based on X-ray diffraction analysis, the size of silver nanoparticles was in the range of 7-16 nm. TEM images showed an even distribution of silver nanoparticles, with a spherical shape. FTIR spectroscopy demonstrated the presence of different functional groups of oxygenated compounds such as carboxyl, hydroxyl, and nitrogenous groups. The antibacterial properties of the synthesized nanoparticles were confirmed. Conclusion. The synthesized nanoparticles showed more antibacterial properties against gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) than gram-negative ones (Escherichia coli and Salmonella enteritidis).


2021 ◽  
Vol 9 (3) ◽  
pp. 220-226
Author(s):  
Bishow Regmi ◽  
Tirtha Raj Binadi ◽  
Sarb Narayan Jha ◽  
Rajib Kumar Chaudhary ◽  
Bhoj Raj Poudel ◽  
...  

Silver nanoparticles (AgNPs) have been synthesized by green synthesis using Azadirachta indica leaf extract as both reducing and stabilizing agent. Synthesis of colloidal AgNPs was monitored by UV- visible spectroscopy. The UV- visible spectrum showed a peak at 455 nm corresponding to the plasmon absorbance of the silver nanoparticles. Crystallite structure of silver nanoparticles was studied using X-ray diffraction (XRD) analysis which revealed the face-centered cubic structure (FCC) with average particle size of 8.9 nm, calculated using Debye-Scherrer’s equation. Transmission electron microscopy (TEM) image revealed the agglomeration of small grain with particle size ranging from 2 to 14 nm. FCC crystalline nature was also evident from selected area electron diffraction (SAED) analysis. High purity of as-synthesized AgNPs was analyzed using energy dispersive X-ray (EDX) spectroscopy. Band gap energy was calculated to be 2.7 eV from UV- Visible spectra. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was stabilized by AgNPs which reveals its antioxidant efficacy. Well diffusion method showed 7 mm to 12 mm zone of inhibition (ZOI) against Gram-positive and Gram-negative bacteria, respectively confirming the antibacterial potential of AgNPs. Int. J. Appl. Sci. Biotechnol. Vol 9(3): 220-226.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1137
Author(s):  
Fazal Ur Rehman ◽  
Rashid Mahmood ◽  
Manel Ben Ali ◽  
Amor Hedfi ◽  
Amine Mezni ◽  
...  

This study was planned to synthesize a multifunctional nanomaterial that can effectively encounter the organic pollutants, multidrug-resistant bacteria and reactive free radicals. The Bergenia ciliate (B. ciliate) leaves extract was used as a reducing and capping agent for the synthesis of nickel oxide nanoparticles (NiO NP). The physicochemical properties were studied through X-ray diffractometre (XRD), energy dispersive X-ray (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and Fourier transform infrared (FTIR) spectroscopies. The highly crystalline monoclinic NiO NPs were synthesized with crystallite size of 27.45 nm. The average particle size derived from TEM micrograph was 49.35 nm whereas the calculated band gap for NiO NPs was 3.78 eV. The photocatalytic study shows that 92.17% of the rhodamine 6G (Rh-6G) was efficiently degraded in the presence of NiO NPs. The agar well diffusion method was applied to examine the antibacterial activity of NiO NPs and the activity was found higher against Gram-negative bacteria (GNB) as compared to Gram-positive bacteria (GPB). The ABTS free radical scavenging activity was also performed, however, the activity was found less than the standard.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 97
Author(s):  
Suresh V. Chinni ◽  
Subash C. B. Gopinath ◽  
Periasamy Anbu ◽  
Neeraj Kumar Fuloria ◽  
Shivkanya Fuloria ◽  
...  

The present study was planned to characterize and analyze the antimicrobial activity of silver nanoparticles (AgNP) biosynthesized using a Coccinia indica leaf (CIL) ethanolic extract. The present study included the preparation of CIL ethanolic extract using the maceration process, which was further used for AgNP biosynthesis by silver nitrate reduction. Biosynthetic AgNPs were characterized using UV–Visible spectrometry, zeta potential analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) spectrometry. The biogenic AgNP and CIL extracts were further investigated against different bacterial strains for their antimicrobial activity. The surface plasmon resonance (SPR) signal at 425 nm confirmed AgNP formation. The SEM and TEM data revealed the spherical shape of biogenic AgNPs and size in the range of 8 to 48 nm. The EDX results verified the presence of Ag. The AgNPs displayed a zeta potential of −55.46 mV, suggesting mild AgNP stability. Compared to Gram-positive bacteria, the biogenic AgNPs demonstrated high antibacterial potential against Gram-negative bacteria. Based on the results, the current study concluded that AgNPs based on CIL extract have strong antibacterial potential, and it established that AgNP biosynthesis using CIL ethanol extract is an effective process.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Hernane S. Barud ◽  
Thaís Regiani ◽  
Rodrigo F. C. Marques ◽  
Wilton R. Lustri ◽  
Younes Messaddeq ◽  
...  

Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by“in situ”preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and absorption in the UV-Visible (350 nm to 600 nm). Thermal and mechanical properties together with swelling behavior for water were considered. TEA concentration was observed to be important in order to obtain only Ag particles and not a mixture of silver oxides. It was also observed to control particle size and amount of silver contents in bacterial cellulose. The composite membranes exhibited strong antimicrobial activity against Gram-negative and Gram-positive bacteria.


2021 ◽  
Vol 891 ◽  
pp. 111-115
Author(s):  
Maradhana Agung Marsudi ◽  
Farah Fitria Sari ◽  
Pandu Mauliddin Wicaksono ◽  
Adinda Asmoro ◽  
Arif Basuki ◽  
...  

In this work, silver nanoparticles have been successfully synthesized using simple and environmentally friendly ‘green synthesis’ method using Indonesian wild honey as mediator. Particle count and size can be optimized by varying the silver nitrate precursor and honey concentration, with the help of sodium hydroxide as pH regulator. Based on X-ray diffraction (XRD) result, crystalline structure of Ag has been confirmed in sample with impurities from AgCl. Based on dynamic light scattering (DLS) and transmission electron microscopy (TEM) results, it was found that the smallest average particles size of AgNPs (117.5 nm from DLS and 11.1 nm from TEM) was obtained at sample with 5% w/v of honey and 0.5 mM of AgNO3.


Author(s):  
MONIKA GUPTA

Objective: This research work develops an approach to synthesize silver nanoparticles (AgNPs) by reduction of leaf extract of Catharanthus roseus plant. This study produces synthesized nanoparticles that have process-controlled attributes which make their antibiotic action highly efficient. These attributes include smaller size, proper morphology, uniform dispersion, metal ion content, and formation of functional groups. By optimizing the reduction process parameters, AgNPs gain the desired properties.  Methods: The biosynthesis of AgNPs process was performed using reaction of 10% (w/v) C. roseus leaf extract with AgNO3. The optimum conditions and concentration used for synthesis of nanoparticles were: 1 mM AgNO3, pH 5, and temperature 80°C with an incubation time of 72 h. All the above parameters were analyzed by ultraviolet-visible spectrophotometer with the surface plasmon resonance peak obtained at 440 nm. Results: Various characterization techniques were performed, namely, scanning electron microscopy, energy-dispersive X-ray, transmission electron microscopy, photoluminescence study, X-ray diffraction spectroscopy, Fourier transform infrared, dynamic light scattering, and atomic force microscopy. The results obtained from characterization confirmed the spherical morphology of the nanoparticles with size between 50 and 87 nm. In the current investigation, the antimicrobial activity of biosynthesized AgNPs was also determined using minimum inhibitory concentration and zone of inhibition methods against six different bacteria at different doses of AgNPs (100, 150, and 200 μg/ml) alone and also in combination with antibiotic-streptomycin. Conclusion: The results revealed that high concentration of AgNPs inhibits the bacterial growth. Furthermore, AgNPs revealed much stronger antibacterial action in synergy with streptomycin against antibiotic-resistant bacteria.


2021 ◽  
Vol 6 (1) ◽  
pp. 32-36
Author(s):  
Anh Quoc Le ◽  
Van Phu Dang ◽  
Ngoc Duy Nguyen ◽  
Kim Lan Nguyen Thi ◽  
Kim Lang Vo Thi ◽  
...  

Silver nanoparticles (AgNPs) doped in the zeolite framework (AgNPs/Z) were successfully synthesized by γ-irradiation in ethanol solution of silver ion-zeolite (Ag+/Z) prepared by ion exchange reaction between silver nitrate (AgNO3) and zeolite 4A. The effects of the Ag+ concentration and irradiation dose on the formation of AgNPs/Z were also investigated. AgNPs/Z with the silver content of about 10,000 ppm and the average particle size of AgNPs of about 27 nm was characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). Firstly, AgNPs/Z was added into PP resins for creation of PP-AgNPs/Z masterbatch (Ag content of ~10.000 ppm) and then PP-AgNPs/Z plastics were preapared by mixing masterbatch with PP resins. The antibacterial activity of the PP-AgNPs/Z plastics was investigated against Gram-negative bacteria Escherichia coli (E. coli). The results showed that PP-AgNPs/Z plastic contained 100 ppm of Ag possessed a high antibacterial property, namely the bactericidal effect was more than 96 % on the platic surface. In conclusion, possessing many advantages such as: vigorously antibacterial effect and good dispersion in plastic matrix, AgNPs/Z is promising to be applied as bactericidal agent for plastic industry.


Sign in / Sign up

Export Citation Format

Share Document