scholarly journals Physiological responses and P5CS gene expression of transgenic oil palm plantlet induced by drought stress

2020 ◽  
Vol 88 (2) ◽  
Author(s):  
. TURHADI ◽  
Hayati MINARSIH ◽  
Imron RIYADI ◽  
. PRIYONO ◽  
Asmini BUDIANI

Drought is one of the limiting factors in crop cultivation, such as in oil palm (Elaeis guineensis Jacq.). The transgenic approaches are expected to increase plant tolerance to drought stress and minimize low productivity when drought occurs. Proline is an osmoprotectant compound in plants which its biosynthesis involved the P5CS gene. The objective of this study was to evaluate the tolerance level of P5CS-transgenic oil palm to drought stress induced by polyethylene glycol 6000 (PEG-6000). In this present study, the transgenic and non-transgenic oil palms were treated by  0, 2, and 4% PEG-6000 under in vitro conditions. The experiment was arranged as a factorial completely randomized design with three replications. The drought level score, total chlorophyll content, carotenoids, and proline content, as well as P5CS gene expression in leaf tissues were observed at 7 and 14 days after stress treatments. The result showed that transgenic plantlets had a lower drought level score than those of non-transgenic lines. A concentration of 4% PEG-6000 treatment reduced the total chlorophyll and carotenoids contents than that of 2% concentration in non-transgenic plantlets at 7 and 14 day after treatments (DAT). In addition, proline content and P5CS gene expression level in transgenic had been significantly increased during stress treatment. Based on these results, it can be concluded that the P5CS transgene increased the drought stress tolerance of oil palm.

2020 ◽  
Vol 35 (1) ◽  
pp. 54
Author(s):  
Wiski Irawan ◽  
Eka Tarwaca Susila Putra

The availability of water is one of the main limiting factors for oil palm growth and production. Potassium (K) is an essential nutrient for plants because of its role in controlling metabolic and physiological activities. This study aimed to examine the effect of different K fertilizer doses on root anatomic properties under drought stress. The experiment was arranged in factorial Randomized Complete Block Design (RCBD) with two factors. The first factor was drought stress, consisting of three levels of fractions of transpirable soil water (FTSW) (FTSW 1 (control: field capacity); FTSW 0.35 (moderate drought); FTSW 0.15 (severe drought)) and the second factor was K dose (sourced from KCl), consisting of five levels (K0: 0%; K1: 50%; K2: 100%; K3: 150%; K4: 200%). The results showed that there was an interaction between the addition of K doses and the tolerance level of oil palm plants to drought stress. The addition of 100% K gave higher results in the parameters of xylem diameter, phloem diameter and cortex cell width compared to the plants without K. The results disclosed that 200% K application on moderate drought stress and severe drought stress in oil palm seedlings could widen xylem diameter, phloem diameters, strengthen cell such as epidermal cells, cortex cells, thickness of endodermic cells, thickness of sclerenchyma cells and increase hardness of cell compared to field capacity. As for the parameters of thick endodermic cells, stele diameter and sclerenchyma diameter, an addition of 50% K could give higher results.


2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Made Pharmawati ◽  
Ni Nyoman Wirasiti ◽  
Luh Putu Wrasiati

Abstrak Cekaman kekeringan merupakan faktor pembatas penting bagi pertumbuhan dan produktivitas tanaman termasuk padi.      Penelitian ini bertujuan menganalisis respon padi IR64 terhadap cekaman kekeringan dengan pemberian polietilen glikol (PEG) pada fase reproduktif.  Penelitian juga bertujuan menganalisis ekspresi gen aquaporin akibat cekaman kekeringan.  Bibit padi ditanam dalam pot dan perlakuan PEG dengan konsentrasi 108g/L (-0.25MPa) dan 178g/L (-0.52 MPa) diberikan saat munculnya panikula. Perlakuan diberikan selama 2 minggu, kemudian tanaman disiram kembali.  Ekspresi gen diamati pada akhir perlakuan dengan semi kuantitatif real time PCR.  Ekstraksi RNA menggunakan RNeasy plant mini kit, sedangkan sintesis cDNA menggunakan Transcriptor First Strand cDNA Kit.  Hasil penelitian menunjukkan bahwa jumlah malai dan berat total malai berkurang akibat cekaman kekeringan.  Persentase gabah kosong mencapai 84,6% pada perlakuan PEG-0,52 MPa, sedangkan pada perlakuan PEG -0,25 MPa persentase gabah kosong sebesar 67,8%.  Pada kontrol persentase gabah kosong adalah 10,3%.  Ekspresi gen OsPIP2;7 sedikit menurun pada perlakuan PEG -0,52 MPa.Kata kunci: ekspresi gen, IR64, kekeringan, padi, PEG  Abstract Drought stress is one of the limiting factors of plant growth and productivity including rice.  The aim of this study was to analyze responses of IR64 rice to polyethylene glycol (PEG)-induced-drought stress at the reproductive stage.  This study also aimed to analyze the expression of aquaporin under drought stress.  Rice seedlings were grown in pot system and PEG treatment at concentration of -0.25MPa (108g/L) and -0.52 MPa (178g/L) were given when the panicles arose.  Treatments were conducted for 2 weeks, after that the plants were rewatered.  Gene expression was evaluated at the end of PEG treatment using semi quantitative real time PCR. RNA was extracted using RNeasy plant mini kit, while cDNA synthesis was done using Transcriptor First Strand cDNA Kit.  The results showed that the number and weight of rice ear were less in plant treated with PEG than in control.  The percentage of empty rice grain reached 84.6% at PEG -0.52 MPa, while at PEG -0.25 MPa the percentage of empty grain was 67.8%.  In control plant, the percentage of empty grain was 10.3%.  Drought stress did not alter the expression of OsPIP2;7.  Keywords: drought, gene expression, IR64, PEG, rice


2011 ◽  
Vol 183-185 ◽  
pp. 1071-1074
Author(s):  
Yong Dong Sun ◽  
Xiao Hua Du ◽  
Wen Jie Zhang ◽  
Li Sun ◽  
Ran Li

Effects of drought stress on the seed germination and physiological characteristics of amaranth were investigated. The results were as follows: the germination rate and germination potential of amaranth decreased with the increasing of PEG-6000 concentrations. Meanwhile, the root length, shoot length and peroxidase (POD) activity were significantly increased at lower PEG-6000 concentrations, but then decreased with the increasing of PEG-6000. Malondialdehyde (MDA) content, proline content and superoxide dismutase (SOD) activity were all significantly increased under drought stress, and reached the top at 20% PEG-6000. These findings indicated that amaranth tolerates drought stress through increasing the activities of SOD and POD and accumulating proline content.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingwei Zhang ◽  
Dazhuang Huang ◽  
Xiaojie Zhao ◽  
Man Zhang

AbstractIris germanica, a species with very high ornamental value, exhibits the strongest drought resistance among the species in the genus Iris, but the molecular mechanism underlying its drought resistance has not been evaluated. To investigate the gene expression profile changes exhibited by high-drought-resistant I. germanica under drought stress, 10 cultivars with excellent characteristics were included in pot experiments under drought stress conditions, and the changes in the chlorophyll (Chl) content, plasma membrane relative permeability (RP), and superoxide dismutase (SOD), malondialdehyde (MDA), free proline (Pro), and soluble protein (SP) levels in leaves were compared among these cultivars. Based on their drought-resistance performance, the 10 cultivars were ordered as follows: ‘Little Dream’ > ‘Music Box’ > ‘X’Brassie’ > ‘Blood Stone’ > ‘Cherry Garden’ > ‘Memory of Harvest’ > ‘Immortality’ > ‘White and Gold’ > ‘Tantara’ > ‘Clarence’. Using the high-drought-resistant cultivar ‘Little Dream’ as the experimental material, cDNA libraries from leaves and rhizomes treated for 0, 6, 12, 24, and 48 h with 20% polyethylene glycol (PEG)-6000 to simulate a drought environment were sequenced using the Illumina sequencing platform. We obtained 1, 976, 033 transcripts and 743, 982 unigenes (mean length of 716 bp) through a hierarchical clustering analysis of the resulting transcriptome data. The unigenes were compared against the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG, and gene ontology (GO) databases for functional annotation, and the gene expression levels in leaves and rhizomes were compared between the 20% PEG-6000 stress treated (6, 12, 24, and 48 h) and control (0 h) groups using DESeq2. 7849 and 24,127 differentially expressed genes (DEGs) were obtained from leaves and rhizomes, respectively. GO and KEGG enrichment analyses of the DEGs revealed significantly enriched KEGG pathways, including ribosome, photosynthesis, hormone signal transduction, starch and sucrose metabolism, synthesis of secondary metabolites, and related genes, such as heat shock proteins (HSPs), transcription factors (TFs), and active oxygen scavengers. In conclusion, we conducted the first transcriptome sequencing analysis of the I. germanica cultivar ‘Little Dream’ under drought stress and generated a large amount of genetic information. This study lays the foundation for further exploration of the molecular mechanisms underlying the responses of I. germanica to drought stress and provides valuable genetic resources for the breeding of drought-resistant plants.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mariane B. Sobreiro ◽  
Rosane G. Collevatti ◽  
Yuri L. A. dos Santos ◽  
Ludmila F. Bandeira ◽  
Francis J. F. Lopes ◽  
...  

Abstract Background Water is one of the main limiting factors for plant growth and crop productivity. Plants constantly monitor water availability and can rapidly adjust their metabolism by altering gene expression. This leads to phenotypic plasticity, which aids rapid adaptation to climate changes. Here, we address phenotypic plasticity under drought stress by analyzing differentially expressed genes (DEG) in four phylogenetically related neotropical Bignoniaceae tree species: two from savanna, Handroanthus ochraceus and Tabebuia aurea, and two from seasonally dry tropical forests (SDTF), Handroanthus impetiginosus and Handroanthus serratifolius. To the best of our knowledge, this is the first report of an RNA-Seq study comparing tree species from seasonally dry tropical forest and savanna ecosystems. Results Using a completely randomized block design with 4 species × 2 treatments (drought and wet) × 3 blocks (24 plants) and an RNA-seq approach, we detected a higher number of DEGs between treatments for the SDTF species H. serratifolius (3153 up-regulated and 2821 down-regulated under drought) and H. impetiginosus (332 and 207), than for the savanna species. H. ochraceus showed the lowest number of DEGs, with only five up and nine down-regulated genes, while T. aurea exhibited 242 up- and 96 down-regulated genes. The number of shared DEGs among species was not related to habitat of origin or phylogenetic relationship, since both T. aurea and H impetiginosus shared a similar number of DEGs with H. serratifolius. All four species shared a low number of enriched gene ontology (GO) terms and, in general, exhibited different mechanisms of response to water deficit. We also found 175 down-regulated and 255 up-regulated transcription factors from several families, indicating the importance of these master regulators in drought response. Conclusion Our findings show that phylogenetically related species may respond differently at gene expression level to drought stress. Savanna species seem to be less responsive to drought at the transcriptional level, likely due to morphological and anatomical adaptations to seasonal drought. The species with the largest geographic range and widest edaphic-climatic niche, H. serratifolius, was the most responsive, exhibiting the highest number of DEG and up- and down-regulated transcription factors (TF).


2018 ◽  
Vol 4 (1) ◽  
pp. 16
Author(s):  
Ageng Kaloko

This study was aimed to obtain the time and the effective way of giving B and Si for reducing the effects of drought. It had been implemented in Bendosari village, Madurejo village, Prambanan sub-district, Sleman regency. The study used 3x3 +1 factorial complete randomized block design (RAKL) with with 3 blocks as replicates. The first factor was the time of fertilization, the second factor was way of fertilization and added one control (control) without fertilization treatment. The data obtained were analyzed using the Varian Analysis (ANOVA) at the 5% level and continued by the smallest real difference test (LSD) and orthogonal contrast if the variance analysis showed a significant difference between treatments. The results showed that there was no interaction effect between time and direction of B and Si fertilization through leaves on all observed variables of oil palm seedlings exposed to drought stress.


2016 ◽  
Vol 6 ◽  
pp. 07
Author(s):  
Norberto Durán ◽  
Rubén A. Ortíz

The soil aeration and hydric shortage greatly influence oil palm yield in Central America. This assay was conducted to identify and quantify the effect of the physical properties of the soil and rainfall on the yield of oil palm orchards in Coto and Quepos (Costa Rica) and San Alejo (Honduras). The following soil characteristics were evaluated: texture, moisture retention (pF), gravimetric moisture, drain water, total porosity, aerial space, large pore percentage, penetration resistance and tensimeter readings. These evaluations were conducted on 20 fruit bearing plots (in each locality) located within representative soil units; classified as: a) well drained (Fluventic Eutropepts), b) inperfect or moderately drained (Fluvaquentic Eutropepts) and c) poorly drained (Tropaquepts). San Alejo also shows soils with low base saturation (Dystropepts and Psamments). Twenty four additional plots were analyzed in this latter orchard to relate their yield with the catographic units. Regression and corre lation analysis were run for the three localities. The main limiting factors on production were: poor soil aeration en Coto, poor soil aeration and hydric shortage en Quepos, and poor aeration, low base saturation and sandy textures in San Alejo.


Sign in / Sign up

Export Citation Format

Share Document