scholarly journals Mechanistic paradigms of cell death - revisited

2021 ◽  
Vol 42 (4) ◽  
pp. 903-917
Author(s):  
S.V.S. Rana ◽  

Present review is the description of a journey that originates from Virchows' cell theory and terminates with the role of molecular switches in cell death recently proposed by Orrenius. Landmark discoveries made, in between, to characterize regulated as well as accidental cell death have also been documented. It embraces the studies that were made in early nineties to understand cellular homeostasis in health and disease. Furthermore, the effects of foreign chemicals on different cell types witnessed in late nineties have been classified into necrosis, apoptosis, autophagy etc. Since it is important to know how a cell dies, studies made in our own and other laboratories on the role of reactive oxygen species, oxidative stress, intracellular Ca2+ homeostasis, redox imbalance, mitochondrial and ER stress in cell death have also been reviewed. Possibility of a cross talk amongst these mechanisms has also been examined. It discusses the impact of wonder molecules like CYP450, GSH, metallothionein and melatonin together with enzymatic and non-enzymatic antioxidants on cell death. Understanding the cellular targets and molecular mechanisms activated by a variety of environmental xenobiotics is fundamental for human health risk assessment. It is expected that the contents of this article will answer the fundamental question- why and how cells die.

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Minfei Su ◽  
Yang Mei ◽  
Sangita Sinha

Autophagy and apoptosis are catabolic pathways essential for organismal homeostasis. Autophagy is normally a cell-survival pathway involving the degradation and recycling of obsolete, damaged, or harmful macromolecular assemblies; however, excess autophagy has been implicated in type II cell death. Apoptosis is the canonical programmed cell death pathway. Autophagy and apoptosis have now been shown to be interconnected by several molecular nodes of crosstalk, enabling the coordinate regulation of degradation by these pathways. Normally, autophagy and apoptosis are both tumor suppressor pathways. Autophagy fulfils this role as it facilitates the degradation of oncogenic molecules, preventing development of cancers, while apoptosis prevents the survival of cancer cells. Consequently, defective or inadequate levels of either autophagy or apoptosis can lead to cancer. However, autophagy appears to have a dual role in cancer, as it has now been shown that autophagy also facilitates the survival of tumor cells in stress conditions such as hypoxic or low-nutrition environments. Here we review the multiple molecular mechanisms of coordination of autophagy and apoptosis and the role of the proteins involved in this crosstalk in cancer. A comprehensive understanding of the interconnectivity of autophagy and apoptosis is essential for the development of effective cancer therapeutics.


2018 ◽  
Author(s):  
Lorraine Montel ◽  
Léa Pinon ◽  
Jacques Fattaccioli

Phagocytosis by macrophages represents a fundamental process essential for both immunity and tissue homeostasis. It consists in the uptake of pathogenic or cellular targets larger than 0.5μm. For the biggest particles, the phagocytic process involves a massive reorganization of membrane and actin cytoskeleton as well as an important intracellular deformation, all in a matter of minutes. The study of the role of the size of objects in their phagocytosis has lead to contradictory results in the last decades. We designed a method using confocal microscopy, automated image analysis and databases for fast quantitative analysis of phagocytosis assays. It yields comprehensive data on the cells and targets geometric and fluorescence intensity parameters, automatically discriminates internalized from external targets, and stores the relationship between a cell and the targets it has engulfed. We used two types of targets, solid polystyrene beads and liquid lipid droplets, to investigate the influence of size on the phagocytic uptake of macrophages. The method made it possible, not only to perform phagocytic assays with functionalized droplets and beads of different sizes, but to use polydisperse particles to further our understanding of the role of size in phagocytosis. The use of monodisperse and polydisperse objects shows that while smaller monodisperse objects are internalized in greater numbers, objects of different sizes presented simultaneously are internalized without preferred size. Throughout results, the total surface engulfed by the cell appeared to be the main factor limiting the uptake of particles, regardless of their nature or size. A meta-analysis of the literature reveals that this dependence in surface is consistently conserved throughout cell types, nature of targets or activated receptors.


2020 ◽  
Vol 27 (7) ◽  
pp. 1041-1051 ◽  
Author(s):  
Michael Spartalis ◽  
Eleftherios Spartalis ◽  
Antonios Athanasiou ◽  
Stavroula A. Paschou ◽  
Christos Kontogiannis ◽  
...  

Atherosclerotic disease is still one of the leading causes of mortality. Atherosclerosis is a complex progressive and systematic artery disease that involves the intima of the large and middle artery vessels. The inflammation has a key role in the pathophysiological process of the disease and the infiltration of the intima from monocytes, macrophages and T-lymphocytes combined with endothelial dysfunction and accumulated oxidized low-density lipoprotein (LDL) are the main findings of atherogenesis. The development of atherosclerosis involves multiple genetic and environmental factors. Although a large number of genes, genetic polymorphisms, and susceptible loci have been identified in chromosomal regions associated with atherosclerosis, it is the epigenetic process that regulates the chromosomal organization and genetic expression that plays a critical role in the pathogenesis of atherosclerosis. Despite the positive progress made in understanding the pathogenesis of atherosclerosis, the knowledge about the disease remains scarce.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anna S. E. Cuomo ◽  
Giordano Alvari ◽  
Christina B. Azodi ◽  
Davis J. McCarthy ◽  
Marc Jan Bonder ◽  
...  

Abstract Background Single-cell RNA sequencing (scRNA-seq) has enabled the unbiased, high-throughput quantification of gene expression specific to cell types and states. With the cost of scRNA-seq decreasing and techniques for sample multiplexing improving, population-scale scRNA-seq, and thus single-cell expression quantitative trait locus (sc-eQTL) mapping, is increasingly feasible. Mapping of sc-eQTL provides additional resolution to study the regulatory role of common genetic variants on gene expression across a plethora of cell types and states and promises to improve our understanding of genetic regulation across tissues in both health and disease. Results While previously established methods for bulk eQTL mapping can, in principle, be applied to sc-eQTL mapping, there are a number of open questions about how best to process scRNA-seq data and adapt bulk methods to optimize sc-eQTL mapping. Here, we evaluate the role of different normalization and aggregation strategies, covariate adjustment techniques, and multiple testing correction methods to establish best practice guidelines. We use both real and simulated datasets across single-cell technologies to systematically assess the impact of these different statistical approaches. Conclusion We provide recommendations for future single-cell eQTL studies that can yield up to twice as many eQTL discoveries as default approaches ported from bulk studies.


2021 ◽  
Vol 27 ◽  
Author(s):  
Li-Ping Yu ◽  
Ting-Ting Shi ◽  
Yan-Qin Li ◽  
Jian-Kang Mu ◽  
Ya-Qin Yang ◽  
...  

: Mitophagy plays an important role in maintaining mitochondrial quality and cell homeostasis through the degradation of damaged, aged, and dysfunctional mitochondria and misfolded proteins. Many human diseases, particularly neurodegenerative diseases, are related to disorders of mitochondrial phagocytosis. Exploring the regulatory mechanisms of mitophagy is of great significance for revealing the molecular mechanisms underlying the related diseases. Herein, we summarize the major mechanisms of mitophagy, the relationship of mitophagy with human diseases, and the role of traditional Chinese medicine (TCM) in mitophagy. These discussions enhance our knowledge of mitophagy and its potential therapeutic targets using TCM.


Author(s):  
Salamatu Baba ◽  
◽  
Dikuma Ibrahim ◽  
Sanda Grema ◽  
◽  
...  

In order to promote utilizing the available resource made in any library information has to be taken to the door step of a clientele a such information and communication technology will serve as a catalyst in doing that. This paper has explored the role of information and communication technology ICT in academia and as well as the strategies used in propagating the available services in an academic library this is because tailor made information it is highly required so as to avoid wasting the precious time of academicians and this can be only achieving with the help of information and communication technology software, therefore, descriptive method was adopted in the methodology of this study.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Kongning Li ◽  
Deng Wu ◽  
Xi Chen ◽  
Ting Zhang ◽  
Lu Zhang ◽  
...  

Cell death is a critical biological process, serving many important functions within multicellular organisms. Aberrations in cell death can contribute to the pathology of human diseases. Significant progress made in the research area enormously speeds up our understanding of the biochemical and molecular mechanisms of cell death. According to the distinct morphological and biochemical characteristics, cell death can be triggered by extrinsic or intrinsic apoptosis, regulated necrosis, autophagic cell death, and mitotic catastrophe. Nevertheless, the realization that all of these efforts seek to pursue an effective treatment and cure for the disease has spurred a significant interest in the development of promising biomarkers of cell death to early diagnose disease and accurately predict disease progression and outcome. In this review, we summarize recent knowledge about cell death, survey current and emerging biomarkers of cell death, and discuss the relationship with human diseases.


2022 ◽  
Vol 12 ◽  
Author(s):  
Rui Gui ◽  
Quanjiao Chen

Viral infection usually leads to cell death. Moderate cell death is a protective innate immune response. By contrast, excessive, uncontrolled cell death causes tissue destruction, cytokine storm, or even host death. Thus, the struggle between the host and virus determines whether the host survives. Influenza A virus (IAV) infection in humans can lead to unbridled hyper-inflammatory reactions and cause serious illnesses and even death. A full understanding of the molecular mechanisms and regulatory networks through which IAVs induce cell death could facilitate the development of more effective antiviral treatments. In this review, we discuss current progress in research on cell death induced by IAV infection and evaluate the role of cell death in IAV replication and disease prognosis.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4576
Author(s):  
Hung-Yu Lin ◽  
Hui-Wen Ho ◽  
Yen-Hsiang Chang ◽  
Chun-Jui Wei ◽  
Pei-Yi Chu

Breast cancer (BC) is the most common malignancy among women worldwide. The discovery of regulated cell death processes has enabled advances in the treatment of BC. In the past decade, ferroptosis, a new form of iron-dependent regulated cell death caused by excessive lipid peroxidation has been implicated in the development and therapeutic responses of BC. Intriguingly, the induction of ferroptosis acts to suppress conventional therapy-resistant cells, and to potentiate the effects of immunotherapy. As such, pharmacological or genetic modulation targeting ferroptosis holds great potential for the treatment of drug-resistant cancers. In this review, we present a critical analysis of the current understanding of the molecular mechanisms and regulatory networks involved in ferroptosis, the potential physiological functions of ferroptosis in tumor suppression, its potential in therapeutic targeting, and explore recent advances in the development of therapeutic strategies for BC.


2019 ◽  
Author(s):  
Mark Kalisz ◽  
Edgar Bernardo ◽  
Anthony Beucher ◽  
Miguel Angel Maestro ◽  
Natalia del Pozo ◽  
...  

AbstractDefects in transcriptional regulators of pancreatic exocrine differentiation have been implicated in pancreatic tumorigenesis, but the molecular mechanisms are poorly understood. The locus encoding the transcription factor HNF1A harbors susceptibility variants for pancreatic ductal adenocarcinoma (PDAC), while KDM6A, encoding the histone demethylase UTX, carries somatic mutations in PDAC. Here, we show that pancreas-specific Hnf1a null mutations phenocopy Utx deficient mutations, and both synergize with KrasG12D to cause PDAC with sarcomatoid features. We combine genetic, epigenomic and biochemical studies to show that HNF1A recruits UTX to genomic binding sites in pancreatic acinar cells. This remodels the acinar enhancer landscape, activates a differentiation program, and indirectly suppresses oncogenic and epithelial-mesenchymal transition genes. Finally, we identify a subset of non-classical PDAC samples that exhibit the HNF1A/UTX-deficient molecular phenotype. These findings provide direct genetic evidence that HNF1A-deficiency promotes PDAC. They also connect the tumor suppressive role of UTX deficiency with a cell-specific molecular mechanism that underlies PDAC subtype definition.


Sign in / Sign up

Export Citation Format

Share Document