scholarly journals CHARACTERIZATION OF IRON PRODUCTION WITH MILLSCALE BY PRODUCT REDUCTION

Author(s):  
Lukman Faris Nurdiyansah ◽  
Nono Darsono ◽  
Deni Shidqi Khaerudini

Millscale is a large by product of metal factory. Many methods to recycled it to many applications. The aim of this research is recycled millscale to produce the iron by reduction method with graphite as reductant agent. The reduction process was deed by milled millscale and graphite powder with 4:1 weight ratio was by used High Energy Milling with 4, 6, 12 hours milling time variations. The powder then was characterized by X-Ray Diffraction (XRD), Vibrating Sample Magnetometer (VSM) and SEM-EDS test. The XRD test result is Fe3C as a main phase then carbon, magnetite, wustite and Iron as a minor phase. The percentage of iron composition is increase during milling times amount to 6; 10.9; 13 %. The remanence for the 4, 6, and 12 hours of milling time variation, is 2.89, 3.39, and 4.98 emu/g, for the coercivity (Hc) is 209.58, 188.47, and 223.65 Oe and the magnetic saturation number is 22.59, 30.7, 39.15 emu/g, from Hc value it is concluded that the powder has superparamagnetic behavior.  From SEM-EDS is knowed that the distribution of Fe is more uniform on the surface samples with the increase of milling time.

2013 ◽  
Vol 829 ◽  
pp. 515-519 ◽  
Author(s):  
Shaghayegh Gharegozloo ◽  
Hossein Abdizadeh ◽  
Abolghasem Ataie

The interest in using CNTs as the reinforcement of metal matrix nanocomposites has been growing considerably due to their enhanced properties. In the present work, nickel was reinforced by carbon nanotubes (CNTs) via high energy mechanical milling method. The effects of various amounts of CNTs (5%, 10%, 20% and 30%) and different milling times (1, 5, 10 and 15 hours) were investigated. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM) analysis were used for evaluation of phase composition, morphology and magnetic properties of the samples, respectively. The results showed a homogeneous dispersion of CNTs into the nickel matrix phase by mechanical milling. It was observed that the increase in the milling time, for a particular amount of CNTs, caused a decrease of mean crystallite size from 56 nm to 35 nm. The increase of CNTs amount also resulted in the powder particle refinement. VSM analysis showed that with the increase of CNTs from 0% to 30%, the magnetization of the samples decreases from 52.36 to 30.74 emu/g, and the coercivity of the nanocomposites increases from 61.45 to 114 Oe.


2016 ◽  
Vol 38 ◽  
pp. 107-113
Author(s):  
Maya Radune ◽  
Michael Zinigrad ◽  
Nachum Frage

Taguchi’s method was applied to investigate the effect of the main HEBM parameters: milling time (MT), ball to powder weight ratio (BPWR) and milling speed (MS) on the dissolved AlN fraction in TiN. The settings of HEBM parameters were determined by using the orthogonal experiments array (OA). The as-received and milled powders were characterized by X-ray diffraction (XRD). The optimum milling parameter combination was determined by using the analysis of signal-to-noise (S/N) ratio. According to the analysis of variance (ANOVA) the milling speed is the most effective parameter and the optimal conditions for powder synthesis are: MT 20h, MS 600rpm, BPWR 50:1. The result of the experiment conducted under optimal conditions (AlN was completely dissolved during experiment) confirmed the conclusions of the statistical analysis.


2020 ◽  
Vol 1010 ◽  
pp. 200-205
Author(s):  
Farah Wahida Ismail ◽  
Mohd Hasmizam Razali ◽  
Nik Nurul Anis Nik Yusoff ◽  
Mahani Yusoff

Al2O3-TiO2-graphite nanocomposite can be used as alternative material for coating application. Fine composite coating particles is commonly produced by milling in a high energy ball milling. This study focused on evaluate the effects on the structural, microstructural and physical properties of Al2O3-TiO2-graphite nanocomposite. The alumina, titania and graphite powder were milled in a planetary ball mill at 2, 4, 8 and 10 h and 200, 250 and 300 rpm. The composite particles was compacted for green density determination. The phase analysis and microstructure of nanocomposite were characterized using X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Increasing milling time and milling speed contributes to a small solubility between Al2O3 and TiO2. Increasing milling time and speed decreased the Al2O3 crystallite and internal strain increased as a result of continuous impact on the powder and repeated collision between powder and the wall container. Higher milling time and speed produce finer and flaky shape of Al2O3-TiO2-graphite particles which then affects the green density of the composite.


2020 ◽  
Vol 1000 ◽  
pp. 436-446
Author(s):  
Bambang Suharno ◽  
Nolzha Primadha Ilman ◽  
Achmad Shofi ◽  
Deni Ferdian ◽  
Fajar Nurjaman

This study was conducted to investigate the effect of palm shell charcoal reductant in the selective reduction of nickel ore with the addition of additive at various temperatures and times. In this present work, 10 wt. % of sodium sulfate as additive and 5, 10, 15 wt. % of palm shell charcoal as reductants were used. The reduction of nickel ore was performed at 950oC, 1050oC, and 1150oC for 60, 90, and 120 minutes. A wet magnetic separation method was then carried out to separate the concentrates and tailings. Characterization of reduced ore was performed by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), while the composition of ferronickel in concentrate was identified by X-Ray Fluorescence (XRF). The result showed that the higher temperature reduction, the higher of nickel grade, and its recovery at the concentrate. Nevertheless, the longer reduction time and the more reductant in nickel ore lowering the nickel grade and its recovery in the concentrate. The optimum condition in this selective reduction process was obtained with the addition of 5 wt. % of reductant and 10 wt. % of sodium sulfate in nickel ore, which was reduced at 1150oC for 60 minutes. It resulted in 4.60% and 73.23% for nickel grade and its recovery, respectively.


2007 ◽  
Vol 539-543 ◽  
pp. 2353-2358 ◽  
Author(s):  
Ulrich Lienert ◽  
Jonathan Almer ◽  
Bo Jakobsen ◽  
Wolfgang Pantleon ◽  
Henning Friis Poulsen ◽  
...  

The implementation of 3-Dimensional X-Ray Diffraction (3DXRD) Microscopy at the Advanced Photon Source is described. The technique enables the non-destructive structural characterization of polycrystalline bulk materials and is therefore suitable for in situ studies during thermo-mechanical processing. High energy synchrotron radiation and area detectors are employed. First, a forward modeling approach for the reconstruction of grain boundaries from high resolution diffraction images is described. Second, a high resolution reciprocal space mapping technique of individual grains is presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yongfang Qian ◽  
Zhen Zhang ◽  
Laijiu Zheng ◽  
Ruoyuan Song ◽  
Yuping Zhao

Design and fabrication of nanofibrous scaffolds should mimic the native extracellular matrix. This study is aimed at investigating electrospinning of polycaprolactone (PCL) blended with chitosan-gelatin complex. The morphologies were observed from scanning electron microscope. As-spun blended mats had thinner fibers than pure PCL. X-ray diffraction was used to analyze the degree of crystallinity. The intensity at two peaks at 2θof 21° and 23.5° gradually decreased with the percentage of chitosan-gelatin complex increasing. Moreover, incorporation of the complex could obviously improve the hydrophilicity of as-spun blended mats. Mechanical properties of as-spun nanofibrous mats were also tested. The elongation at break of fibrous mats increased with the PCL content increasing and the ultimate tensile strength varied with different weight ratios. The as-spun mats had higher tensile strength when the weight ratio of PCL to CS-Gel was 75/25 compared to pure PCL. Both as-spun PCL scaffolds and PCL/CS-Gel scaffolds supported the proliferation of porcine iliac endothelial cells, and PCL/CS-Gel had better cell viability than pure PCL. Therefore, electrospun PCL/Chitosan-gelatin nanofibrous mats with weight ratio of 75/25 have better hydrophilicity mechanical properties, and cell proliferation and thus would be a promising candidate for tissue engineering scaffolds.


2011 ◽  
Vol 479 ◽  
pp. 54-61 ◽  
Author(s):  
Fei Wang ◽  
Ya Ping Wang

Microstructure evolution of high energy milled Al-50wt%Si alloy during heat treatment at different temperature was studied. Scanning electron microscope (SEM) and X-ray diffraction (XRD) results show that the size of the alloy powders decreased with increasing milling time. The observable coarsening of Si particles was not seen below 730°C in the high energy milled alloy, whereas, for the alloy prepared by mixed Al and Si powders, the grain growth occurred at 660°C. The activation energy for the grain growth of Si particles in the high energy milled alloy was determined as about 244 kJ/mol by the differential scanning calorimetry (DSC) data analysis. The size of Si particles in the hot pressed Al-50wt%Si alloy prepared by high energy milled powders was 5-30 m at 700°C, which was significantly reduced compared to that of the original Si powders. Thermal diffusivity of the hot pressed Al-50wt%Si alloy was 55 mm2/s at room temperature which was obtained by laser method.


2014 ◽  
Vol 802 ◽  
pp. 20-24 ◽  
Author(s):  
Lucas Moreira Ferreira ◽  
Luciano Braga Alkmin ◽  
Érika C.T. Ramos ◽  
Carlos Angelo Nunes ◽  
Alfeu Saraiva Ramos

The milling process of elemental Ti-2Ta-22Si-11B and Ti-6Ta-22Si-11B (at-%) powder mixtures were performed in a planetary Fritsch P-5 ball mill using stainless steel vials (225 mL) and hardened steel balls (19 mm diameter). Ball-to-powder weight ratio of 10:1 and a rotary speed of 300 rpm were adopted, varying the milling time. Wet milling (isopropyl alcohol) for 20 more minutes was used to increase the yield powder in to the vial. Following the Ti-Ta-Si-B powders milled for 600 min were heat-treated at 1100°C for 1 h in order to obtain the equilibrium structures. The milled powders and heat-treated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. Supersaturated Ti solid solutions were formed during ball milling of Ti-Ta-Si-B powders while that the Ti5Si3 phase was formed after milling for 620 min of the Ta-richer powder mixture only. The particles sizes were initially increased during the initial milling times, and the wet milling provided the yield powder into the vials. A large amount of pores was found in both the sintered samples which presented the formation of the TiSS,(ss-solid solution) Ti6Si2B and TiB.


1995 ◽  
Vol 395 ◽  
Author(s):  
S. A. Ustin ◽  
L. Lauhon ◽  
K. A. Brown ◽  
D. Q. Hu ◽  
W. Ho

ABSTRACTHighly oriented aluminum nitride (0001) films have been grown on Si(001) and Si (111) substrates at temperatures between 550° C and 775° C with dual supersonic molecular beam sources. Triethylaluminum (TEA;[(C2H5)3Al]) and ammonia (NH3) were used as precursors. Hydrogen, helium, and nitrogen were used as seeding gases for the precursors, providing a wide range of possible kinetic energies for the supersonic beams due to the disparate masses of the seed gases. Growth rates of AIN were found to depend strongly on the substrate orientation and the kinetic energy of the incident precursor; a significant increase in growth rate is seen when seeding in hydrogen or helium as opposed to nitrogen. Growth rates were 2–3 times greater on Si(001) than on Si(111). Structural characterization of the films was done by reflection high energy electron diffraction (RHEED) and x-ray diffraction (XRD). X-ray rocking curve (XRC) full-width half-maxima (FWHM) were seen as small as 2.5°. Rutherford back scattering (RBS) was used to determine the thickness of the films and their chemical composition. Films were shown to be nitrogen rich, deviating from perfect stoichiometry by 10%–20%. Surface analysis was performed by Auger electron spectroscopy (AES).


2011 ◽  
Vol 332-334 ◽  
pp. 317-320 ◽  
Author(s):  
Hui Qin Zhang

In this study, composite nanofibers of polyaniline doped with dodecylbenzene sulfonic acid (PANI-DBSA) and Poly(lactic acid) (PLA) were prepared via an electrospinning process. The surface morphology, thermal properties and crystal structure of PLA/PANI-DBSA nanofibers are characterized using Fourier transform infrared spectroscopy (FT-IR), wide-angle x-ray diffraction (WAXD) and scanning electron microscopy (SEM). SEM images showed that the morphology and diameter of the nanofibers were affected by the weight ratio of blend solution.


Sign in / Sign up

Export Citation Format

Share Document