scholarly journals Distillation optimization: Parameterized relationship between feed flow rate of a steady-state distillation column and heat duties of reboiler and condenser

Author(s):  
Ivan Sukin ◽  
Anatoly Tsirlin ◽  
Alexander Balunov ◽  
Ilya Starodumov

The paper considers the problem of maximum efficiency for the system of distillation columns. Columns in such systems are connected in parallel or sequential way. The mixture being separated is assumed to be close to ideal one. Authors parameterize the relationship between feed flow rate and heat duties of a steady-state binary distillation column using two parameters: the reversible efficiency and the irreversibility coefficient. This relationship is later being used to solve the problems about optimal distribution of heat and feed flows within the system. The results obtained allow to estimate minimum heat energy demand for distillation of the given feed flow, maximum performance and efficiency of the system.

2013 ◽  
Vol 641-642 ◽  
pp. 270-276
Author(s):  
Yong Qiang Zhang ◽  
Jing Wang ◽  
Mei Ling Shi ◽  
Xiao Xian Zhao

The purpose of this study is to recover molybdenum (VI) from aqueous solution with packed foam column by steady-state operation using hexadecyl trimethyl ammonium chloride as the surfactant. The parameters include air and feed flow rate, packing layer heights, surfactant concentration and pH etc, then the macroscopical dynamics is studied. The experimental results show that there are little effects of liquor pH, air flowrate and surfactant concentration on recovery rate and enrichment ratio of molybdenum within experimental conditions, but with increase of feed flow rate, recovery rate and enrichment ratio all decline clearly, with increase of packing height, recovery rate enhances evidently, and enrichment ratio decreases slowly. The macroscopical dynamics show that the process can be regarded as first order reaction. The fluid flow pattern is close to piston, indicating that there is little liquid backmixing and in favor of advancing separation efficiency by analyzing variance and distribution density function.


2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Zuzana Švandová ◽  
Jozef Markoš ◽  
L’udovít Jelemenský

AbstractComparison of the performance of a reactive distillation column with three different hardware configurations is presented. As a reaction system the methyl tertiary-butyl ether (MTBE) synthesis has been chosen. The sieve tray columns with catalyst (encased inside wire gauze envelopes) placed along the liquid flow path differ in the number of reactive trays. The column simulations have been performed using the nonequilibrium model. The steady state behaviour of the three different hardware configurations was studied regarding the three input parameters; feed flow rate of methanol, feed flow rate of butenes, and reflux ratio. It has been shown that by varying the location of the methanol feed stage, the columns exhibit significantly different solution diagrams using the butenes feed flow rate as a continuation parameter. Using dynamic simulations, different perturbations of the manipulated variables were found to cause transitions between multiple steady states and these were also investigated. The major objective of this paper is to demonstrate the importance of the hardware choice in the performance of a reactive distillation column e.g. during the start-up or if occasional variations of the operating parameters occur.


2020 ◽  
Vol 207 ◽  
pp. 01016
Author(s):  
Mariya Dushkova ◽  
Siyka Kodinova

This experimental investigation aimed to establish the energy demand depending on the working pressure (0,2 MPa and 0,5 MPa), the feed flow rate (190 dm3/h and 330 dm3/h) and the volume reduction ratio (2 and 4) during ultrafiltration of goat’s milk by membrane with molecular weight cut-off 10 kDa. The energy demand increased with the rise of all three factors investigated. The most significant effect had the pressure followed by the volume reduction ratio and the feed flow rate. The lowest value of energy demand (12,29 kWh/m3) was obtained at low levels of all factors (pressure of 0,2 MPa, feed flow rate of 190 dm3/h, volume reduction ratio of 2).


2018 ◽  
Vol 69 (5) ◽  
pp. 1149-1151
Author(s):  
Laura Ruxandra Zicman ◽  
Elena Neacsu ◽  
Felicia Nicoleta Dragolici ◽  
Catalin Ciobanu ◽  
Gheorghe Dogaru ◽  
...  

Ultrafiltration of untreated and pretreated aqueous radioactive wastes was conducted using a spiral-wound polysulphonamide membrane. The influence of process factors on its performances was experimental studied and predicted. Permeate volumetric flux and permeate total suspended solids (TSS) were measured at different values of feed flow rate (7 and 10 m3/h), operating pressure (0.1-0.4 MPa), and feed TSS (15 and 60 mg/L). Permeate flux (42-200 L/(m2�h)) increased with feed flow rate and operating pressure as well as it decreased with an increase in feed TSS, whereas permeate TSS (0.1-33.2 mg/L) exhibited an opposite trend. A 23 factorial plan was used to establish correlations between dependent and independent variables of ultrafiltration process.


2020 ◽  
Vol 20 (5) ◽  
pp. 654-669
Author(s):  
Thea Magrone ◽  
Manrico Magrone ◽  
Emilio Jirillo

Mast cells (MCs) have recently been re-interpreted in the context of the immune scenario in the sense that their pro-allergic role is no longer exclusive. In fact, MCs even in steady state conditions maintain homeostatic functions, producing mediators and intensively cross-talking with other immune cells. Here, emphasis will be placed on the array of receptors expressed by MCs and the variety of cytokines they produce. Then, the bulk of data discussed will provide readers with a wealth of information on the dual ability of MCs not only to defend but also to offend the host. This double attitude of MCs relies on many variables, such as their subsets, tissues of residency and type of stimuli ranging from microbes to allergens and food antigens. Finally, the relationship between MCs with basophils and eosinophils will be discussed.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Daisuke Fujiwara ◽  
Naoki Tsujikawa ◽  
Tetsuya Oshima ◽  
Kojiro Iizuka

Abstract Planetary exploration rovers have required a high traveling performance to overcome obstacles such as loose soil and rocks. Push-pull locomotion rovers is a unique scheme, like an inchworm, and it has high traveling performance on loose soil. Push-pull locomotion uses the resistance force by keeping a locked-wheel related to the ground, whereas the conventional rotational traveling uses the shear force from loose soil. The locked-wheel is a key factor for traveling in the push-pull scheme. Understanding the sinking behavior and its resistance force is useful information for estimating the rover’s performance. Previous studies have reported the soil motion under the locked-wheel, the traction, and the traveling behavior of the rover. These studies were, however, limited to the investigation of the resistance force and amount of sinkage for the particular condition depending on the rover. Additionally, the locked-wheel sinks into the soil until it obtains the required force for supporting the other wheels’ motion. How the amount of sinkage and resistance forces are generated at different wheel sizes and mass of an individual wheel has remained unclear, and its estimation method hasn’t existed. This study, therefore, addresses the relationship between the sinkage and its resistance force, and we analyze and consider this relationship via the towing experiment and theoretical consideration. The results revealed that the sinkage reached a steady-state value and depended on the contact area and mass of each wheel, and the maximum resistance force also depends on this sinkage. Additionally, the estimation model did not capture the same trend as the experimental results when the wheel width changed, whereas, the model captured a relatively the same trend as the experimental result when the wheel mass and diameter changed.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Dinc ◽  
Yousef Gharbia

Abstract In this study, exergy efficiency calculations of a turboprop engine were performed together with main performance parameters such as shaft power, specific fuel consumption, fuel flow, thermal efficiency etc., for a range of flight altitude (0–14 km) and flight speeds (0–0.6 Mach). A novel exergy efficiency formula was derived in terms of specific fuel consumption and it is shown that these two parameters are inversely proportional to each other. Moreover, a novel exergy efficiency and thermal efficiency relation was also derived. The relationship showed that these two parameters are linearly proportional to each other. Exergy efficiency of the turboprop engine was found to be in the range of 23–33%. Thermal efficiency of the turboprop engine was found to be around 25–35%. Exergy efficiency is higher at higher speeds and altitude where the specific fuel consumption is lower. Conversely, exergy efficiency of the engine is lower for lower speeds and altitude where the specific fuel consumption is higher.


2021 ◽  
Vol 1143 (1) ◽  
pp. 012007
Author(s):  
Hary Devianto ◽  
Isdiriyani Nurdin ◽  
Pramujo Widiatmoko ◽  
Kafi Adi Prasetya ◽  
Basil Pradipta

Sign in / Sign up

Export Citation Format

Share Document